6,641 research outputs found
Growth kinetics of physical vapor transport processes: Crystal growth of the optoelectronic material mercurous chloride
Physical vapor transport processes were studied for the purpose of identifying the magnitude of convective effects on the crystal growth process. The effects of convection on crystal quality were were studied by varying the aspect ratio and those thermal conditions which ultimately affect thermal convection during physical vapor transport. An important outcome of the present study was the observation that the convection growth rate increased up to a certain value and then dropped to a constant value for high aspect ratios. This indicated that a very complex transport had occurred which could not be explained by linear stability theory. Better quality crystals grown at a low Rayleigh number confirmed that improved properties are possible in convectionless environments
Quantum integrability of quadratic Killing tensors
Quantum integrability of classical integrable systems given by quadratic
Killing tensors on curved configuration spaces is investigated. It is proven
that, using a "minimal" quantization scheme, quantum integrability is insured
for a large class of classic examples.Comment: LaTeX 2e, no figure, 35 p., references added, minor modifications. To
appear in the J. Math. Phy
Resonant Raman Scattering by quadrupolar vibrations of Ni-Ag Core-shell Nanoparticles
Low-frequency Raman scattering experiments have been performed on thin films
consisting of nickel-silver composite nanoparticles embedded in alumina matrix.
It is observed that the Raman scattering by the quadrupolar modes, strongly
enhanced when the light excitation is resonant with the surface dipolar
excitation, is mainly governed by the silver electron contribution to the
plasmon excitation. The Raman results are in agreement with a core-shell
structure of the nanoparticles, the silver shell being loosely bonded to the
nickel core.Comment: 3 figures. To be published in Phys. Rev.
The location, clustering, and propagation of massive star formation in giant molecular clouds
Massive stars are key players in the evolution of galaxies, yet their
formation pathway remains unclear. In this work, we use data from several
galaxy-wide surveys to build an unbiased dataset of ~700 massive young stellar
objects (MYSOs), ~200 giant molecular clouds (GMCs), and ~100 young (<10 Myr)
optical stellar clusters (SCs) in the Large Magellanic Cloud. We employ this
data to quantitatively study the location and clustering of massive star
formation and its relation to the internal structure of GMCs. We reveal that
massive stars do not typically form at the highest column densities nor centers
of their parent GMCs at the ~6 pc resolution of our observations. Massive star
formation clusters over multiple generations and on size scales much smaller
than the size of the parent GMC. We find that massive star formation is
significantly boosted in clouds near SCs. Yet, whether a cloud is associated
with a SC does not depend on either the cloud's mass or global surface density.
These results reveal a connection between different generations of massive
stars on timescales up to 10 Myr. We compare our work with Galactic studies and
discuss our findings in terms of GMC collapse, triggered star formation, and a
potential dichotomy between low- and high-mass star formation.Comment: 13 pages, 7 figures, in pres
Novel inferences of ionisation & recombination for particle/power balance during detached discharges using deuterium Balmer line spectroscopy
The physics of divertor detachment is determined by divertor power, particle
and momentum balance. This work provides a novel analysis technique of the
Balmer line series to obtain a full particle/power balance measurement of the
divertor. This supplies new information to understand what controls the
divertor target ion flux during detachment.
Atomic deuterium excitation emission is separated from recombination
quantitatively using Balmer series line ratios. This enables analysing those
two components individually, providing ionisation/recombination source/sinks
and hydrogenic power loss measurements. Probabilistic Monte Carlo techniques
were employed to obtain full error propagation - eventually resulting in
probability density functions for each output variable. Both local and overall
particle and power balance in the divertor are then obtained. These techniques
and their assumptions have been verified by comparing the analysed synthetic
diagnostic 'measurements' obtained from SOLPS simulation results for the same
discharge. Power/particle balance measurements have been obtained during
attached and detached conditions on the TCV tokamak.Comment: The analysis results of this paper were formerly in arXiv:1810.0496
Evaluation of a load cell model for dynamic calibration of the rotor systems research aircraft
The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission system from the fuselage. An analytical model of the relationship between applied rotor loads and the resulting load cell measurements is derived by applying a force-and-moment balance to the isolated rotor/transmission system. The model is then used to estimate the applied loads from measured load cell data, as obtained from a ground-based shake test. Using nominal design values for the parameters, the estimation errors, for the case of lateral forcing, were shown to be on the order of the sensor measurement noise in all but the roll axis. An unmodeled external load appears to be the source of the error in this axis
Thermal and solutal convection with conduction effects inside a rectangular enclosure
We numerically investigate the effects of various boundary conditions on the flow field characteristics of the physical vapor transport process. We use a prescribed temperature profile as boundary condition on the enclosure walls, and we consider parametric variations applicable to ground-based and space microgravity conditions. For ground-based applications, density gradients in the fluid phase generate buoyancy-driven convection which in turn disrupts the uniformity of the mass flux at the interface depending on the orientation. Heat conduction in the crystal can affect the fluid flow near the interface of the crystal. When considering isothermal source and sink at the interfaces, we observe a diffusive mode and three modes (i.e., thermal, solutal, and thermo-solutal). The convective modes show opposing flow field trends between thermal and solutal convection; theoretically, these trends can be used to achieve a uniform mass flux near the crystal. However, under the physical conditions chosen, the mathematical condition necessary for uniform mass flux cannot be satisfied because of thermodynamic restrictions. When a longitudinal thermal gradient is prescribed on the boundary of the crystal, a non-uniform interface temperature results, which induces a symmetrical fluid flow near the interface for the vertical case. For space microgravity applications, we show that the flow field is dominated by the Stefan wind and a uniform mass flux results at the interface
Generalized Classical BRST Cohomology and Reduction of Poisson Manifolds
In this paper, we formulate a generalization of the classical BRST
construction which applies to the case of the reduction of a poisson manifold
by a submanifold. In the case of symplectic reduction, our procedure
generalizes the usual classical BRST construction which only applies to
symplectic reduction of a symplectic manifold by a coisotropic submanifold,
\ie\ the case of reducible ``first class'' constraints. In particular, our
procedure yields a method to deal with ``second-class'' constraints. We
construct the BRST complex and compute its cohomology. BRST cohomology vanishes
for negative dimension and is isomorphic as a poisson algebra to the algebra of
smooth functions on the reduced poisson manifold in zero dimension. We then
show that in the general case of reduction of poisson manifolds, BRST
cohomology cannot be identified with the cohomology of vertical differential
forms.Comment: 3
Effects of g-Jitter on Diffusion in Binary Liquids
The microgravity environment offers the potential to measure the binary diffusion coefficients in liquids without the masking effects introduced by buoyancy-induced flows due to Earth s gravity. However, the background g-jitter (vibrations from the shuttle, onboard machinery, and crew) normally encountered in many shuttle experiments may alter the benefits of the microgravity environment and introduce vibrations that could offset its intrinsic advantages. An experiment during STS-85 (August 1997) used the Microgravity Vibration Isolation Mount (MIM) to isolate and introduce controlled vibrations to two miscible liquids inside a cavity to study the effects of g-jitter on liquid diffusion. Diffusion in a nonhomogeneous liquid system is caused by a nonequilibrium condition that results in the transport of mass (dispersion of the different kinds of liquid molecules) to approach equilibrium. The dynamic state of the system tends toward equilibrium such that the system becomes homogeneous. An everyday example is the mixing of cream and coffee (a nonhomogeneous system) via stirring. The cream diffuses into the coffee, thus forming a homogeneous system. At equilibrium the system is said to be mixed. However, during stirring, simple observations show complex flow field dynamics-stretching and folding of material interfaces, thinning of striation thickness, self-similar patterns, and so on. This example illustrates that, even though mixing occurs via mass diffusion, stirring to enhance transport plays a major role. Stirring can be induced either by mechanical means (spoon or plastic stirrer) or via buoyancy-induced forces caused by Earth s gravity. Accurate measurements of binary diffusion coefficients are often inhibited by buoyancy-induced flows. The microgravity environment minimizes the effect of buoyancy-induced flows and allows the true diffusion limit to be achieved. One goal of this experiment was to show that the microgravity environment suppresses buoyancy-induced convection, thereby mass diffusion becomes the dominant mechanism for transport. Since g-jitter transmitted by the shuttle to the experiment can potentially excite buoyancy-induced flows, we also studied the effects of controlled vibrations on the system
- …
