7,310 research outputs found
Solid state microelectronics tolerant to radiation and high temperature
The 300 C electronics technology based on JFET thick film hybrids was tested up to 10 to the 9th power rad gamma (Si) and 10 to the 15th power neutrons/sq cm. Circuits and individual components from this technology all survived this total dose although some devices required 1 hour of annealing at 200 or 300 C to regain functionality. This technology used with real time annealing should function to levels greater than 10 to the 10th power rad gamma and 10 to the 16th power n/sq cm
Decuplet Baryon Structure from Lattice QCD
The electromagnetic properties of the SU(3)-flavor baryon decuplet are
examined within a lattice simulation of quenched QCD. Electric charge radii,
magnetic moments, and magnetic radii are extracted from the E0 and M1 form
factors. Preliminary results for the E2 and M3 moments are presented giving the
first model independent insight to the shape of the quark distribution in the
baryon ground state. As in our octet baryon analysis, the lattice results give
evidence of spin-dependent forces and mass effects in the electromagnetic
properties. The quark charge distribution radii indicate these effects act in
opposing directions. Some baryon dependence of the effective quark magnetic
moments is seen. However, this dependence in decuplet baryons is more subtle
than that for octet baryons. Of particular interest are the lattice predictions
for the magnetic moments of and for which new recent
experimental measurements are available. The lattice prediction of the
ratio appears larger than the experimental ratio, while the
lattice prediction for the magnetic moment ratio is in good
agreement with the experimental ratio.Comment: RevTeX manuscript, 34 pages plus 21 figures (available upon request
Health and Wellness: The Shift From Managing Illness to Promoting Health
Examines the rise in health plan initiatives to promote wellness as a way for employers to manage costs and to engage employees in their own healthcare decisions through wellness activities, behavior modification programs, and health risk assessments
Chiral Properties of Pseudoscalar Mesons on a Quenched Lattice with Overlap Fermions
The chiral properties of the pseudoscalar mesons are studied numerically on a
quenched lattice with the overlap fermion. We elucidate the role of the
zero modes in the meson propagators, particularly that of the pseudoscalar
meson. The non-perturbative renormalization constant is determined from
the axial Ward identity and is found to be almost independent of the quark mass
for the range of quark masses we study; this implies that the error is
small. The pion decay constant, , is calculated from which we
determine the lattice spacing to be 0.148 fm. We look for quenched chiral log
in the pseudoscalar decay constants and the pseudoscalar masses and we find
clear evidence for its presence. The chiral log parameter is
determined to be in the range 0.15 -- 0.4 which is consistent with that
predicted from quenched chiral perturbation theory.Comment: Version accepted for publication by PRD. A few minor typographical
errors have been corrected. 24 pages, 11 figure
A feasibility study of signed consent for the collection of patient identifiable information for a national paediatric clinical audit database
Objectives: To investigate the feasibility of obtaining signed consent
for submission of patient identifiable data to a national clinical
audit database and to identify factors influencing the consent process
and its success.
Design: Feasibility study.
Setting: Seven paediatric intensive care units in England.
Participants: Parents/guardians of patients, or patients aged 12-16
years old, approached consecutively over three months for signed
consent for submission of patient identifiable data to the national
clinical audit database the Paediatric Intensive Care Audit Network
(PICANet).
Main outcome measures: The numbers and proportions of admissions for
which signed consent was given, refused, or not obtained (form not
returned or form partially completed but not signed), by age, sex,
level of deprivation, ethnicity (South Asian or not), paediatric index
of mortality score, length of hospital stay (days in paediatric
intensive care).
Results: One unit did not start and one did not fully implement the
protocol, so analysis excluded these two units. Consent was obtained
for 182 of 422 admissions (43%) (range by unit 9% to 84%). Most
(101/182; 55%) consents were taken by staff nurses. One refusal (0.2%)
was received. Consent rates were significantly better for children who
were more severely ill on admission and for hospital stays of six days
or more, and significantly poorer for children aged 10-14 years. Long
hospital stays and children aged 10-14 years remained significant in a
stepwise regression model of the factors that were significant in the
univariate model.
Conclusion: Systematically obtaining individual signed consent for
sharing patient identifiable information with an externally located
clinical audit database is difficult. Obtaining such consent is
unlikely to be successful unless additional resources are specifically
allocated to training, staff time, and administrative support
The Negativity of the Overlap-Based Topological Charge Density Correlator in Pure-Glue QCD and the Non-Integrable Nature of its Contact Part
We calculate the lattice two-point function of topological charge density in
pure-glue QCD using the discretization of the operator based on the overlap
Dirac matrix. Utilizing data at three lattice spacings it is shown that the
continuum limit of the correlator complies with the requirement of
non-positivity at non-zero distances. For our choice of the overlap operator
and the Iwasaki gauge action we find that the size of the positive core is ~2a
(with a being the lattice spacing) sufficiently close to the continuum limit.
This result confirms that the overlap-based topological charge density is a
valid local operator over realistic backgrounds contributing to the QCD path
integral, and is important for the consistency of recent results indicating the
existence of a low-dimensional global brane-like topological structure in the
QCD vacuum. We also confirm the divergent short-distance behavior of the
correlator, and the non-integrable nature of the associated contact part.Comment: 13 pages, 5 figure
Pion Decay Constant, and Chiral Log from Overlap Fermions
We report our calculation of the pion decay constant , the axial
renormalization constant , and the quenched chiral logarithms from the
overlap fermions. The calculation is done on a quenched lattice at
fm using tree level tadpole improved gauge action. The smallest pion
mass we reach is about 280 MeV. The lattice size is about 4 times the Compton
wavelength of the lowest mass pion.Comment: Lattice2001(Hadronic Matrix Elements), 3pages, 5figure
Baryon Octet to Decuplet Electromagnetic Transitions
The electromagnetic transition moments of the -flavor baryon octet to
decuplet are examined within a lattice simulation of quenched QCD. The magnetic
transition moment for the channel is found to be in
agreement with recent experimental analyses. The lattice results indicate
. In terms of the Particle Data Group
convention, GeV for
transitions. Lattice predictions for the hyperon transition moments agree
with those of a simple quark model. However the manner in which the quarks
contribute to the transition moments in the lattice simulation is different
from that anticipated by quark model calculations. The scalar quadrupole form
factor exhibits a behavior consistent with previous multipole analyses. The
multipole transition moment ratios are also determined. The lattice
results suggest \% for
transitions. Of particular interest are significant
nonvanishing signals for the ratio in and
electromagnetic transitions.Comment: PostScript file, 37 pages including figures. U. MD PP #93-085, U. KY
PP #UK/92-09, TRIUMF PP #TRI-PP-92-12
- …
