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The chiral properties of the pseudoscalar mesons are studied numerically on a queridagit@@vith the
overlap fermion. We elucidate the role of the zero modes in the meson propagators, particularly that of the
pseudoscalar meson. The non-perturbative renormalization cortaist determined from the axial Ward
identity and is found to be almost independent of the quark mass for the range of quark masses we study; this
implies that theD(a?) error is small. The pion decay constdntis calculated from which we determine the
lattice spacing to be 0.148 fm. We look for the quenched chiral log in the pseudoscalar decay constants and the
pseudoscalar masses and we find clear evidence for its presence. The chiral log patasné&termined to
be in the range 0.15-0.4, which is consistent with that predicted from quenched chiral perturbation theory.

DOI: 10.1103/PhysRevD.65.054507 PACS nuntderll.15.Ha, 11.30.Rd, 12.38.Gc

[. INTRODUCTION has a small error in the chiral limit. Thus, it is a good quan-
tity to set the lattice scale. We present the results in Sec. IV.
One of the main goals of lattice QCD is to understandin Sec. V, we explain our effort in searching for the predicted
from first principles low-energy phenomenology as a consequenched chiral logs. We see the chiral logs in the pseudo-
quence of chiral symmetry. Recent advances in the formulascalar masses, the pseudoscalar matrix elerfientind the
tion of chiral fermions on the lattice hold great promise for fp/f, ratio at very small quark masses. A summary is given
studying chiral symmetry of QCD at finite lattice spacing in Sec. VI.
[1].
Neuberger’s overlap fermidi2], derived from the overlap
formalism[3], is such a chiral fermion on the lattice and has
been implemented numerically to study the chiral condensate For Neuberger's overlap fermiof2], we adopt the fol-
[4-7], quark masd8,7], renormalization constan{s8,7,9, lowing form for the massive Dirac operatf®,12,13:
and short-distance current correlatpt§] and to check chi-
ral symmetry[8,11] and scalingd8]. However, these studies moa
are limited to small volumes due to the large numerical cost D(mg) = ( 1- 2—)pD(p)+moa, (€h)
associated with approximating the matrix sign function. In p
this paper we shall study physical observables, such as the
pseudoscalar meson masses and pion decay constants clydeere
to the physicali,d quark mass. As such, we need to work on
a lattice which is at least 3 times larger than the Compton D(p)=1+ yse(H), (2
wavelength of the pion with the smallest mass in order to
alleviate finite volume effects. We work on a®2attice with g that
a=0.148 fm as determined from the pion decay constant
f .. This gives the lattice sizeka=3.0 fm and the smallest

IIl. NUMERICAL DETAILS

pion mass is~280 MeV. Thus, the lattice size is4 times D(mg)=p+ %+ p— Mo yse(H), 3
the Compton wavelength of the lowest-mass pion. 2 2

This paper is organized as follows. We will give the nu-
merical details of the calculation in Sec. II. In Sec. lll, we where e(H)=H/\/H? is the matrix sign function ané is
shall discuss the effect of the zero modes in the mesotaken to be the Hermitian Wilson-Dirac operator, i.Bl.,
propagators. In view of the fact that the scalar condensate- y;D,,. HereD,, is the usual Wilson fermion operator, ex-
receives a contribution from the zero modegshich goes cept with a negative mass parametep= 1/2«—4 in which
away in the infinite volume limjtthrough the generalized «.<«<0.25. We take«<=0.19 in our calculation which cor-
Gell-Mann—Oakes—RennéBOR) relation, the pseudoscalar responds tgp=1.368. The massive overlap action is so de-
correlator should also be contaminated by the zero modesined so that the tree-level renormalization of mass and wave
We have observed the effect of the zero modes in the psetfunction is unity. The bare mass paraméten,, is propor-
doscalar propagator at small quark mass. After clarifying the
zero mode issue, we proceed to calculate the non——
perturbatively determined renormalization constagtfrom INote that we used a different normalization in the action before
the axial Ward identity and the pion decay constBnt We  in [8]. As a result the bare mass here is equap ttimes the bare
find thatf . is free of the quenched chiral log singularity and mass in[8].
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TABLE I. Quark masanga and number of gauge configuratiofcfg.) are listed.

mpa 0.01505 0.01642 0.01915 0.02736 0.04104 0.05472 0.06840 0.08208
No. of cfg. 25 25 63 63 53 63 25 63

mpa 0.09576 0.1094 0.1368 0.1642 0.1915 0.2189 0.2462 0.2736
No. of cfg. 25 63 25 63 25 63 25 63

tional to the quark mass without an additive constant whictdimensions and the fixed boundary condition in the time di-
we have verified numerically in a previous stud}. rection so that we can have effectively a longer range of time
We adopt the optimal rational approximatidi®,8] to ap-  separation between the source and sink to examine the me-
proximate the matrix sign function. The inversion of the son propagators with small quark masses which lead to
guark matrix involves nested do loops in this approximationlonger correlation lengths. The source of the meson interpo-
It is found that it is cost effective to project out a relatively lation field is placed at the third time slice and we consider
few eigenmodes with very small eigenvalues in the operatothe sink as far as the 16th time slice to mitigate the boundary
H?2 in order to reduce the condition number and speed up theffect. This gives us a time separation of 13.
convergence in the inner do lodp,8]. At the same time, this We have varied statistics for different quark masses. Of
improves chiral symmetry relations such as the Gell-Mann-the 16 cases, seven have 25 gauge configurations, one has
Oakes—Renner relatig8]. However, it is showrf15] that 53, and the remaining eight have 63 configurations. In order
the density of these small eigenmodes grows@swith a  to carry out correlated fits to extrapolate observables to the
being the lattice spacing. As a result, it is very costly andphysical pion mass, we construct the covariance matrix by
impractical to work on large volumes with the lattice spac-embedding the one with smaller dimension, e.g. 25 and 53
ings currently used. There are simply too many small eigeninto the one with dimension 63 in a block diagonal form. For
modes to be projected out. example, the covariandg;; for the one with 25 configura-
For this reason we explore other options to clear thigions is constructed so th&t;;(i<25)>25)=0, C(i>25|]
hurdle. We have tested the tree-level tadpole-improved<25)=0 andC;j(i,j>25)=g; .
Luscher-Weisz gauge acti¢m6] and find that the density of
these small eigenvalue modes is decreased to a point where it
becomes feasible to go to large volumes with a lattice size 4ll. ZERO MODE EFFECTS IN MESON PROPAGATORS

times the Compton wavelength of the lightest pion. We fur-  The quark zero mode is known to contribute to the
ther find that the anisotropic actidd7] requires projection vacuum scalar densityy) on a finite volume. The latter

- 2 . -
of more small .e|genv_alues ™ in order to ach|ev_e the SaME can be written in the following form for small quark mass
convergence in the inner loop than does the isotropic one,. .

Thus, we decide to use the isotropic action. We also find that °°

using the clover action with either sign requires the projec-

tion of more small eigenvalue modes. Therefore we use the — (Ql)

Wilson action forH in the Neuberger operator. On a*20 —(y)= moV *+Co C1Mo, ()
lattice with 8=7.60 tree-level tadpole-improved &cher-
Weisz gauge action, we project out 85 small eigenmodes. . . . .
Beyond these eigenmodes, the level density becomes larg here(_} Is the topolog_|cal cha_lrge which, according to the
As a result, the number of conjugate gradient steps is aboti tiya-Singer theorem, is the difference between the number

345 for the inner loop and about 300 for the outer Ioop.Of left-handed and right-handed zero modes., an,
While the number for the inner do loop seems to be fairly_n+) and has b(_een shqwn to hpld for Qverlap fe".“'O”S or
independent of the lattice volume, the number for the outePther local fermion actions which satisfy the Ginsparg-
do loop is about a factor of 2 larger than those for the WilsonVilson relation[18,19. Since(|Q|) grows as\V, the zero
gauge action on small volumé8]. mode_ contrlbutlon vanishes in the infinite volume limit while
Since the conjugate gradient algorithm accommodatek€€PiNgMo fixed at a non-zero value. Thus the quark con-
multiple masses with a minimum overhead, we calculated 16/€nsate which is the infinite volume and zero mass limit of
quark masses ranging fromya=0.015 05 tomya=0.2736  (##) is represented by, in Eq. (4). However, on a fixed
which are listed in Table | together with the number of con-finite volume lattice, this zero mode contribution is divergent
figurations for each mass. for small enoughm,. This was first observed in the domain-
From the string tension With@= 440 MeV, we find that wall formulation[20] and is also seen in the overlap fermion
a=0.13 fm. However, as we shall see later in Sec. IV, thd21]. Here we reproduce it in Fig. 1 which shows the diver-
scale determined fronfi, is 0.1482) fm which makes the gent part of( ) from the zero modes for a®& 12 lattice
physical length of the lattice to be 3.0 fm. The smallest pionwith the Wilson gauge action #=5.7.
mass turns out to be-280 MeV so that the size of the
lattice is~4.1 times of the Compton wavelength of the low-
est mass pion and more than 4 times for the heavier ones. We shall address the quenched chiral log issue separately in
We adopt the periodic boundary condition for the spatialSec. V.
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02 T - T - T y y - to be linearly proportional tany. Here we have ignored the
50 conf, —+—1 . . . . .
| 0.000320/x +0.00964+ 1.674%x ——-—— > complication due to the quenched chiral log which we will
address in Sec. V.
0.15 | 1 Next, we turn to the zero-momentum pseudoscalar propa-
T gator [d3x({73(x) 72(0)) which has two terms due to the
o ! zero modes as pointed out in the study of domain wall fer-
T ol ] mions[23]
& P
e [ dxtrxmion
0.05 | -
B f @S tr(y 00 g (g (0) 1;(0))
0 1 1 1 1 1 1 1 1 1 - - 2
001 002 003 004 005 006 007 008 009 0.1 hj=zero modes Mo
He s (Y00 gD (0) #,(0))
FIG. 1. (¢) as a function of the quark mass. We used 50 i=0x>0 mo(A2+m3)
configurations of a $x 12 lattice with Wilson gauge action &
=5.7. Herepa=mya/2p. N (0| 7r(0)| ) [>e~ ™=t @

2m,
We see from Fig. 1 that, is non-zero in this range of the

quark mass and upon extrapolation to the infinite volumel he first term is purely the zero-mode contribution. The sec-
before taking the chiral limit defines the quark condensat®nd term is the cross term between the zero modes and the
—3.. However, if one keeps the volume fixed and lets the"onzero modes. We have used the property that the nonzero
quark mass approach zero, ergga<0.001, it is then found Modes come in pairs which are related by, i.e., ysi
[4,5,21 thatc, becomes zero. It is know22] that when the = ¥ - Upon integrating the propagator with respect to
size of the lattice is much smaller than the pion Comptorfime, we find

wavelength, i.e.. <1/m_, the constant term vanishes and

() is proportional tamg3.2V for small masses aside from i:zo tr(’ﬂiT(o) ¢i(0))
the(|Q|)/myV term. Using finite size scaling, the chiral con- f d*x{m(x)m(0))= 5
densate®, can be extractefb]. Mo
While we have a reasonably good understanding of the
role of zero modes i), their role in the hadron propa- , S tr( (0),(0))
gators is only beginning to be investigated in the domain- + 1=0r=0
wall formalism[23] and the overlap formalisii6,7] and its Mo(A2+m3)
detailed influence on the hadron propagators is not fully un-
derstood. We shall investigate it in the pseudoscalar meson |(0]7(0)|)[?
channel. There has been some concern about the behavior of + T ®

the pion mass. It is not clear if it approaches zero in a finite B
volume in the chiral limit. In fact, one finds that the pion Comparing with the generalized GOR relation in Es), we
mass squared appears to approach a non-zero value on snege that the first term corresponds to ¢h@|)/mgV term in
lattices[24,25. To understand the situation, we first examineEg. (4) and the second term vanishes due to the orthogonality
the generalized Gell-Mann—Oakes—Ren(@OR) relation between the zero modes and the non-zero modes. In either
2(2mg)? o case, we expect that the number of zero modes grows with
TJ d*xdy(m?(x)m(y)) = —2mo(yp). (5)  V and the eigenfunctions(0)=1/\V. As a result, both
zero-mode terms in Eq$7) and (8) decrease with volume
like 1/\V and are finite volume artifacts.

The most straightforward way of isolating the zero mode
contribution is to calculate their eigenvectors and project

em out as is done in R4R6]. However, this is very costly,
as costly as calculating the quark propagator itself.

We show the pseudoscalar propagator for a light quark
22 2 mass (ya=0.01915) in Fig. 2 and we see that there ap-
fems =2mgycy+2mge; . (6) pears a kink at/a~8-9. (The source is placed &§/a=3

From this we see thah’ approaches zero as, for those  so that it appears at { to)/a~11—12) To further explore
volumes wheree, is non-zero. On the other hand, when theits origin, we separate the 63 configurations into 19 with
my is so small that, becomes zero for certain fixed volume, trivial topology (i.e.,Q=0) and 44 with non-trivial topology
the rhs of Eq(6) is survived by the next leading term with ~ (i.e., Q#0) and plot the respective pseudoscalar propagators
which is proportional tan3. As a result, one expects that,  in Figs. 3 and 4.

The left-hand siddlhs) of Eqg. (5) has a contribution of
2(|Q|)/V as does the right-hand sidehs). Assuming the
remainder of the pseudoscalar susceptibility is dominated b,
the pion, it is approximately- f2m?2 . Comparing with Eq.
(4), we get

054507-3
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20* with 63 configurations moa = 0.01915 20* with 44 Q # 0 configurations mea = 0.01915
10 T T T T 10 T T T T
3 3
1F E 1F E
It I 3
i i
= i by = t f by
=) ty = I}
" M i E I 3 i 3 E
Py 1 i A i
O [ O] i i
iy Py
L 3 : i I
3 [
001 | E 001 | E
0.001 L L L L 0.001 L L L L
0 5 10 15 20 0 5 10 15 20
(t+t)/a (t+to)/a
FIG. 2. Pion propagator fomga=0.019 15 for all 63 configu- FIG. 4. The same as in Fig. 3 for 44 configurations witk 0.

rations. The source is placedtagtfa=3
time ranget/a from 4 to 8,mpa=0.245(58) which is quite a

We see that the propagator on t@:o Conﬁgurations bit hlgher than that of thQ:O Configurations. We take this
(Fig. 3 has a single exponential all the way frafa=5 to ~ @s evidence that the zero-mode contributions, the combined
14. Upon fitting a single exponential in this range, we finddirect and cross terms, fall off faste_r ire than th_e pseudo- _
mpa=0.153(12). On the other hand, the propagator of thescalar mass. We can thus use the time separation as the filter
Q#0 configurationgFig. 4) still has a pronounced kink at to obtain the masses and decay constants of the physical
t/a~8. When we fit it in the rang&/a=8-14, the mass is Pseudoscalar mesons. Now we can understand why in the
mpa=0.146(32) which is quite consistent with that from the Previous studies afp, themg does not approach zero with

Q=0 configurations. On the other hand, when we fit thethe quark mas$24,25. In Ref.[24] the lattice size is &
X 12 with 8=5.7. Since it uses the fixed boundary condition

20% with 19 Q = 0 configurations moa = 0.01915 in the time direction, the maximum usable time separation is

10

20* lattice with Overlap Fermions t/a=5-9
0.3 T T T 0

02 |

w ‘ R
= 3 /
a, Olp % L E 6[: 015 | 1
~ g g /
G Iy
I g
3 3 E
3 I i 01f i
3
3 J
001 F -
0.05 | H} R
o . . .
0.001 , . . . 0 0.05 0.1 0.15 02
0 5 10 15 20 moa
(t+19)/a

FIG. 5. mzpa2 vs mpa with a fit of mpa in the window oft/a
FIG. 3. Pion propagator fomga=0.019 14 for 19 configura- =5-—9. The dotted line is a fit linear and quadraticrima. The
tions withQ=0. solid line is a fit including the chiral log.
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63 configurations with my = 0.01915 06 T ' ' T '
1 T T T T
0.5
0.1 -
0.4
[}
~ E 3
= L]
S o : ! L D)
. by L s,
| i |
Tg‘ [
= '
' o001 i 4 02
< i
G
b 0.1
t
0.0001 - .
WL
0 0.05 0.1 0.15 0.2 0.25 0.3
1e-05 ' L ' ' Mod
0 5 10 15 20

FIG. 7. m,z,a2 vs mpa calculated frorrGA4p(5=0,t) The linear
(t + tO)/a plus quadratic fitdotted ling and the chiral log fitsolid line) from

FIG. 6. PropagatoGA4p(|5=O,t) for mpa=0.019 15 for all 63 Eq. (32) with A, =08 GeV are discussed in Sec. V.
configurations. the zero mode and the boundary reflection is unsettling in
this case. For this reason, we examine the propagator
abqut 7. This translates_into _tim_e separatic_m%ﬂ on our GA4P(p:0’t) instead. Since the zero modes on one gauge
lattice. In Ref[25] the lattice size is 12<24 with 5=5.9.In  configuration have the same chirality, the pure zero mode
this study the authors use the periodic boundary condition igontribution i.e., the direct zero mode contribution which
time, time slices up to 12 are fitted which corresponds tacorresponds to the first term on the right-hand side of Eq.
~10 on our lattice. In either case, the fitted time range ig7)] vanishes. The cross-term between the zero modes and
expected to be contaminated by the zero mode contributiothe non-zero modes does not vanish, but is expected to be

and result in a higher mass for a given quark mass. To verif .41l due to cancellations. We plot in Fig.G, p(5=0l)
this, we fit our data in the time rangéa=5-9 and plot the 4

resulting mﬁ,a2 in Fig. 5. We see that they indeed do not . . o - _

approach zero with a fit linear and quadraticiga (dashed ~ KINK in the range 5<(t+1tg)/a<15 as is inGpp(p=01) in

line), similar to those shown in Ref§24,25. One may at- Fig. 2.eThus, we shall calculate the pseudoscalar masses from

tempt to interpret the data to include a chiral log and forceGa,p(P=01t). The results of3a? so obtained are plotted in

the pion mass to go to zero in the chiral limit. This can beFig. 7.

misleading. We shall defer the discussion of the complication Comparing with Fig. 5, we note thm,%az in Fig. 7 which

due to the quenched chiral log in Sec. V. are free from the zero mode contamination are lower than the
In principle, one can overcome the zero mode problem by:orresponding ones in Fig. 5 for small quark masses. How

fitting the zero momentum pion propaga@pp(|5=0,t) ina m,%a2 approaches zero in the chiral limit is complicated by

time range beyond the localized zero mode contributionthe presence of the quenched chiral log. We shall postpone

such as beyondtty)/a>12 in Fig. 2. Unfortunately, our this discussion until Sec. V, except to mention that the solid

data at larger time slices are tainted by the reflection from théne in Fig. 7 is the fit with the chiral log and the dotted line

fixed boundary at t(+ty)/a=20 when the quark mass is is the fit with linear and quadratic terms imya.

small so that the fit in the limited time window to avoid both  The zero mode contributions to mesons can be written as

for the same quark magsya=0.019 15 and we do not see a

j d3X<M (X)M (0)>|zero modes

, tr(y] (x) ysT i (] (0)T y544,.(0))
i,j=zero modes mg l i=0A>0 mo()\2+ m(z)) '

- f d3x{ s OOy e O sy, (0)

9
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yvhereF aan are thg gamma matrices for the correspond- ZA<0|3;LAM|7T(I5=0)>=2mo<0|P|7T(I5:0)>, (12
ing meson interpolation fields. For the pseudoscalar meson
as we discussed abovE=—T' = ys. For the scalar meson Where the matrix elements can be obtained from the zero-

(the connected insertion partl’=I"=1. Since the zero momentum correlators

modes are the eigenstates @f, i.e., ysi¢i—o= * ¢;—o, the R

zero mode contribution in the scalar propagator has a nega- G‘,4A4p(p:O,t)= < 2 &4A4(x)P(O)>
tive sign from that in the pseudoscalar propagator. Thus, it is X
suggested23,6,7 to consider

Gpp<5=o,t>=<2 P<x>P<0>>. (13)
f d3X[(m(x)7(0)) +(o(x)o(0))] (10) x

I . The non-perturbativé 5 is then
where the zero-mode contributions cancel and at |argét P A

should be dominated by the pseudoscalar. However, there is 2MeGpp(p=04t)
a problem. As will be shown in a separate publicati@], Zp=lim—— = (14)
the large time part of the isovector-scalar propagator for the t—oo G(;4A4P(p:01t)

quark mass range that we are concerned about turns out to be There has been extensive sty@@—37 of the O(a) im-

negative. It is pointed out in a study with pole shifting in the provement of the Wilson action and composite operators in
I 1 i i H ! . . . - -

Wilson action[28] that it is dominated by the would-bg"  re|ation to the chiral symmetry and axial Ward identity. It has

andw |.ntermed|.ate state whl_ch is nega}twe.due to que_nch_lngbeen shown[30] that in the improved mass-independent

In the intermediate time region, there is still the contributionrenormalization scheme, the renormalized improved axial

from ' and 7 intermediate state besides tag As a con-  cyrrent and pseudoscalar density have the following form
sequence, the addition of the pseudoscalar and scalar mespgm anO(a) improved action:

is not a viable solution to obtaining the pseudoscalar mass. It

is also suggested that the axial-vector interpolation field with AEI Zp(1+bamga){A,+caad, P},
I'=T"=v,vs does not have the direct term contribution from
the zero modes since all the zero modes have the same PR=Zp(1+ bpmga)P, (15

chirality in a given gauge configuration. However, the sec-

ond term in Eq(9) may still have a contribution. Since it is Where my=my—m, is the subtracted quark mass acg,

a cross term, it might be small due to cancellations. Unforba, andbp are improvement coefficients. The renormaliza-

tunately, our data on theA,A,) correlator are much noisier tion constantZ, andZp are functions of the modified cou-

than the () correlator, since(0|A,|m(0))=+v2m_f,  pling g5=g5(1+bymya). Now that the overlap fermion is

which diminishes when the pion mass is small. We cannoO(a) improved[33], it satisfies the Ginsparg-Wilson relation

conclude anything from them. [34] and the quark mass is not additively renormalized. As a
It appears that, short of projecting out the zero modesesult,b,=c,=bp=0. The renormalization constagj, de-

from the meson propagators, fitting the pseudoscalar masermined from Eq.(14) has onlyO(a?) error as a conse-

from the propagatoGA4p(5=0,t) is probably the only prac- quenceZ, thus computed for all the quark masses are plot-

tical way of getting reasonably reliable and accurate pseudd€d in Fig. 8 as indicated by the open circles. We see that
; Hhfi .+ there is still an appreciabl®(a?) error. Given that the time
scalar masses for our lattice with fixed boundary condition. ’
derivative itself inGH4A4p(p=0,t) invokes arO(a?) error, it
IV. Z, AND PION DECAY CONSTANT F would be better to adopt a definition fdp which is devoid
) . . of this superfluousO(a?) error. This can be achieved by
It has been pointed out in our earlier woig] that the  qricing that, at large where the pion state dominates the
renormalization constanZ, for the axial currentA,

. 1-D/20)(#/2 b btained directl propagatorG%AAp(ﬁ:O,t), one can effectively make the
= yliy, s p)(7/2)]¢y can be obtaine irectly substitution

through the axial Ward identity
Zpd, A= 22 MoZpP, (11) Gya,p(P=01) — M, Gp p(p=01). (16)

t—oo

V\{herel_3= Yli 7/5(1_—l D/2p)(7/2)]¢ is the pseudoscalar den- Consequently, Eq(14) becomes

sity. SinceZ,,=Z5~ and Zg=Zp due to the fact that the

scalar density)(1—D/2p)(7/2)¢ and the pseudoscalar den- _ 2m0GPP(5: 01)
sity P are in the same chiral multipleZ,,, andZ, cancel in Zp=lim S .
Eq. (11) and one can determin&€, to O(a?) non- t=2MyGa,p(p=01)
perturbatively from the axial Ward identity using the bare = We plot the results oZ 5 from Eq.(17) in Fig. 8. Save for
massm, and bare operatdP. To obtainZ,, we shall con- the last two points at the smallest massagg=0.015 05
sider the on-shell matrix elements between the vacuum anaind 0.016 42, the errors are small. We should point out that
the zero-momentum pion state for the axial Ward identity it is conspicuously flat as a function afpa indicating that

17
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FIG. 8. Z, vs quark massnya. The results from Eq(14) are
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indicated byo and those from Eq(17) are indicated bye.

the O(a?) error from the action and the operators is small.
We fit them in the formZ,+ bm(z)a2 and found thatZ,
=1.5894),b=0.175(73) with y2/DF =0.30. We see that

0.3
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FIG. 9. Renormalized ,a vs quark massnya.

GA4P<5=o,t>=<E A4<x>P<0>>, (18)

Z, is determined to the precision of a fraction of 1%. We findand G,p(p=01),

it to be larger than the perturbative calculatid®?] which
gives Zp(u=1/a)=1.213 for Wilson gauge action witj®
=5.85 which has about the same string tension as our gauge
configurationsZ, from both Eqs(14) and(17) are tabulated

in Table I1.

ZpGa,p(P=01)
f a=Ilim emnt2, (19
t==\Vm;aGpp(p=0;t)

For the pion decay constant, one can look at the ratio of
the zero-momentum correlator

TABLE Il. Renormalization constari, from Eq.(14) (column

2) and Eq.(17) (column 3.

Mo Z, [Eq. (14)] Zp [Eq.(17)]
0.2736 1.49() 1.6054)
0.2462 1.498) 1.5946)
0.2189 1.51() 1.5974)
0.1915 1.5168) 1.5898)
0.1642 1.53R) 1.5965)
0.1368 1.530%) 1.58511)
0.1094 1.55(2) 1.5928)
0.09576 1.55@) 1.58712)
0.08208 1.56(2) 1.5938)
0.06840 1.56() 1.59413)
0.05472 1.5668) 1.58612)
0.04104 1.57%) 1.59515)
0.02736 1.57@®) 1.60417)
0.01915 1.58Q7) 1.58520)
0.01642 1.58672) 1.61860)
0.01505 1.5961.05) 1.598114)

For our definition of the isovector axial and pseudoscalar
currents, the experimentél, is 92.4 MeV.
Combining withZ, from Eq. (14), we obtain

2mea\Gpp(p=01)Ga,p(p=01)
m_t/2

e ",

fa=lim =
e VM.aG,ap(p=01)
(20)

We first fit the pion masses fro@A4p(5:O,t) and feed

them into Eq.(20). Unlike the case witlZ, in Egs.(14) and
(17) where the boundary effects on the common source for
the interpolation fieldP in the numerator and denominator
cancel, they do not cancel ifi,. To correct for this, we

replace  VGpp(p=0t)  with  Gpp(p=0t)em?
VGpp(p=0,(N;+ 1)a—ty)em™ (Nt Da~to) which should get
rid of the boundary effect that affects the matrix element
(O|P|w) associated with the source Bpp. The errors of
the ratio are obtained with the jackknife method. We plot the
result in Fig. 9 as a function ahya as open circles. We also
tabulate them in Table Il together with the pion mass com-

puted fromG p(p=01).
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TABLE lIl. Pion masses obtained fro@A4p(5:0,t) are listed together witi,,a from Eq.(20) (column
4), Eq. (21) (column 3, andfpa? from Eq. (34).

moa m,a m2a? f.a [Eq. (20)] f.a [Eq. (21)] fpa’

0.2736 0.7084) 0.4976) 0.092510) 0.099110) 0.127313)
0.2462 0.6607) 0.4369) 0.089623) 0.095223) 0.1192298)
0.2189 0.6204) 0.3845) 0.088312) 0.092911) 0.1155%14)
0.1915 0.57®) 0.3289) 0.085224) 0.089331) 0.108238)
0.1642 0.527) 0.2807) 0.083914) 0.086913) 0.104816)
0.1368 0.47715) 0.22814) 0.081333) 0.083733) 0.098339)
0.1094 0.42@8) 0.1847) 0.079413) 0.081G19) 0.096322)
0.09576 0.39a.7) 0.15914) 0.078428) 0.079437) 0.093443)
0.08208 0.37®) 0.14Q7) 0.077@13) 0.077921) 0.093925)
0.06840 0.34Q@9 0.11813 0.075526) 0.076240) 0.092749)
0.05472 0.31®) 0.097356) 0.074415) 0.075318) 0.094230)
0.04104 0.27A2 0.074@65) 0.072918) 0.073325) 0.093332)
0.02736 0.236L7) 0.055780) 0.072219 0.072829) 0.105534)
0.01915 0.216.6) 0.046769) 0.072126) 0.070927) 0.122242)
0.01642 0.21817) 0.0475205 0.071444) 0.0708598) 0.14512)

0.01505 0.20&63) 0.0437221) 0.073450) 0.073869) 0.15214)

As in the case oZ, defined fromG, a,p(p=0t), f, 7 even though the physicaj’ is not completely flavor-
defined from Eq(20) containsO(a?) error invoked by the sm_glet and has octet mixturéas a double pole in t_he \Ven-
time derivative. We shall again make the substitution in Eq&Ziane model for the (1) anomaly[36,37. As such, it does

(16) and arrive at not move the mass of the would-be Goldstone boson to the
large ' mass. Consequently, this leads to infrared singular
2moa\/Gpp(5=O,t)m,,aemﬂ”2 7' loops with the hair-pin type diagrams in the renormaliza-
f,a=Ilim > . (21 tion of hadron masses and certain matrix elements and thus
t—e (m-a) alters their chiral behaviors from those of full QCD with

dynamical fermions.

The first study of the anomalous chiral behavior was done
by Sharpd 35] and Bernard and Golterm488] in quenched
chiral perturbation theory. They predicted the chiral log pa-

thologies in the pseudoscalar meson masses)), the

fx /f, ratio, etc. The first evidence of the chiral log was
observed by the CP-PACS Collaborati@$] in the ratio of
pseudoscalar meson masses with two unequal quark masses
with the Wilson fermion. They obtain the chiral log param-
eter§=0.8—1.2. A more extensive study0] which invokes

the shifting of the real poles of the quark propagator to im-

ideal quantity to set the scale of the lattice. Comparing withP0V€ the otherwise poor chiral properties of the Wilson fer-

the experimental valud,_=92.4 MeV, we determine the mion near the chiral limit was carried out to examine the
scale of our lattice to balo.148(2) fm. This is about 14% quenched chiral logs in the pseudoscalar masses and the

higher than that determined from the string tension Withpseudoscalar decay constants, obtaining consistent results

Jo=440 MeV and 20% larger than that determined fromW|th 6=0.065£0.013. The same quenched chiral log is also

ro. This is quite consistent with other quenched calculationsOPServed in the ratio ofn;/mq with the Kogut-Susskind

Our results orf, and its quark mass dependence are Congiction[41] with §=0.061+0.03. All of them are small com-

sistent with those calculated with the domain-wall fermionparecj to that expected from the_ coupling of the would-be
[23] and the overlap fermion7] on smaller lattices and Goldstope bpsonéor qugrk loops in t,he pseudoscalar chan-
higher pion masses. nel) which is responsible for thep mass of the 1)
anomaly. Recently, the small nonzero eigenvalues of the

overlap Dirac operator were calculated in a deconfined phase
[42] and it was found that the chiral condensate diverges at

In the quenched approximation of QCD’ one ignores théhe |nf|n|te Volume ||m|t indicating a quenched Singularity
virtual quark loops. One of the consequences is that th€onsistent with the quenched chiral perturbation prediction
flavor-singlet meson propagatéwhich we shall refer to as (g)ocm™¥(1+9),

The results are listed in Table 11l and plotted in Fig. 9 as
e. The difference from the reflects theD(a?) error due to

the time derivative inG[,4A4p(|5=0,t). With all 16 data
points in a linear fit, we find

f ,a=0.069111)+0.10956)mya, (22
with xy2/DF=0.03. We note that it yields an error of only
1.6% in the chiral limit. Given that it is a physical observable

from the fermion operator without the chiral logarithm in a
quenched theor}y35] and with such high precision, it is an

V. QUENCHED CHIRAL LOGS
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Given that the overlap fermion has the promise of exact TABLE IV. Quenched chiral logarithmic parametef and
chiral symmetry on the lattice, it is natural to look for these x*/DF as fitted fromm2a? in Eq. (31).
chiral singularities and check if the quenched chiral logs seer

in the Wilson and Kogut-Susskind fermions can be verified ~ No. of smallesimya s x*IDF
with the overlap action. The first attempt to extract the chiral
. . 8 0.24(12) 0.24
log from the pion mass on several small volumes was incon-
clusive [8]. We shall examine them here on a much larger o 0.22491) 0.22
volume ' 10 0.16375) 0.28
' 1 0.145%66) 0.28

The behavior of the quenched chiral logs can be seen
from the sigma mode[40] with U(3)xU(3) where the
pseudoscalar field is represented by

_ 1\?
fp=(0| i y5¢|w<5=0>>=<ﬁ) Tr

w

U :eqsolfeizgzlxad)a/f' (23)

where \, is the SU3) flavor matrix and¢, are the octet T - o~
Goldstone boson fields. The(lJ part is described byy’ fo= (0, ys9lm(p=0))/\2m, =T,
field with ¢po=/2/N¢ 7' /T, whereN; is the number of flavors

which is 3 In our case. The _effe.ct of the chirgl logs can bewherefp is the pseudoscalar decay constant &nds the
understood as the renormalization effect of integrating out

he »' 1401 Th It % il ’ ““axial decay constant anih andf,, are constants for small
tseentZd E)y()]the rgnger;ua}:ggju(s) SU(3) will be repre quark masses. Thus, one expects that fhais singular as

the quark masses approaches zero in the quenched approxi-

(29

U= e,<¢g>,2f2e22:l)\a¢a,f_ (24) matiqn; yvhereasﬁﬂ remains a constant. From the axial Ward
identity in Eq.(11) and Eq.(29), one expects
In the quenched approximation, the integral representing the s
»' loop involves only the hair-pin diagram of two would-be o f—Pocm 1 (30
singlet Goldstone bosofwe shall refer to it ag; and it has L m?2. '

the same mass as) propagators
wherem, is the quark mass and therefore

o 2 J 4 ~ J' dp  -md
(dp)= VN, x(n(X) (X)) = (2m)N; pPrme m2ocmy/(3+ (31)
—Eé A2 which is the behavior predictedﬁin quencheBT [35].
- 162N nﬁ_ 1. (29) Givenm_a fitted from G, p(p=0t) and listed in Table

I, we first fit them in the form in Eq(31) for a range of
Therefore, the infrared singular part Ofin Eq. (24) can be  small quark mass points. We list the fittédand x?/DF in
represented by Table IV. We find thats ranges from 0.145(66) to 0.24(12).
Beyond this range of 8 to 11 smallest quark masses, the
2 8 1\% errors are greater than half of the fittédzalue.
U=e °M mvezalxa"sa”:(—z) e*a-ha%all, - (26) Since the form in Eq(31) is limited to smallmya, we
m shall also fitm2a? with the form[38,39

ks

where m’a?=Ampa{1— 5[ In(Ampa/A%a?) + 1]} +Bmja?,
m2 (32
= —0. (27
16m°N;f2 which allows a fit to cover the whole range of 16 quark
masses. The best fits which give stable valuea afhdB and

From the Witten-Veneziano model of the’ mass,m,  With errors less than half of the fitted valuesfor a range
~870 MeV. This gives an estimate 6&=0.183. of AX:0'6 GeV to 1.4 GeV are listed in Table V.

To see the effects on various physical quantities, one can . o ,
first look at pseudoscalar density and axial current operators TABLE V. Quenched chiral logarithmic parame@andx“/DF

[40]. In the sigma model, as fitted fromm?, in Eq. (32).
Wi ysporU—UT A, (Gev) A B 5 X%/DF
o 0.6 1.727) 3.08  0.237) 0.18
Py, yspxi[U19,U—(a,U"HU]. (29 0.8 1.4211)  3.08)  0.2811) 0.18
1.0 11724  3.08)  0.3417) 0.18

With U given in Eq.(26), one arrives at
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They are consistent with those fitted in the exponential 20* Lattice with Overlap Fermions
form, albeit with values o between 0.2 and 0.3 which are 03 - ' ' - -
somewhat higher than those from the exponential form.

We plot the fit withA , =0.8 GeV as a solid line in Fig.
7. To check if there is indeed a bona fide quenched chiral log. 0B
we fit mea2 alternatively with powers irmga up to cubic
terms and find

0.2 b

m2a®=1.655)mea+0.5421)m3a%, x?/DF=0.90,
m2a®=1.8910)mya— 2.3 11)m3a’+ 7.8 30)m3a’,

X?/DF=0.46. (33

The fit including the cubic term imga is shown in Fig. 7
as the dotted line. We see that in either case ytH®F is 0.05 - 1
larger than that with the quenched chiral log in Table V
which is 0.18. From this, we conclude that the quenched
chiral is seen in our data fanZa?. 0 e " e » e o

We should point out that if we were to use tmda? data maa
from the shorter time range such as the one wiith=5 0
—9 as plotted in Fig. 5 and insist on fitting them with a  FIG. 10. Renormalizedra? vs quark massnya. The solid line
power form in Eq.(31), we would find that one can fit the is a fit excluding the two smallest quark masses with
last 12 mass points with=0.054+0.028 and y/DF  =0.8 GeV in Eq.(35).
=0.98. This is plotted as the solid line in Fig. 5. This serves
as a caveat to show that one can misconstrue the contaminagain, results with reasonably small errors ay@lDF less

tion of the zero modes as the quenched chiral log. than unity are reported in Table VI.
Finally, we look for the chiral log irfp, which according We see thab obtained fromfpa? is consistent with those
to Eq.(29) should grow in the form of (12)°. We calculate  determined frommZa2. Combining all the fits fromm?ZaZ
the renormalized p from and fpa?, & appears to span the range from 0.15 to 0.4
which is consistent with that predicted from the quenchéd
fpa’= lim ZpyGpp(t)2mpae™!?, (349  loop in the chiral perturbation theory in E7) [35,28,
t/a>1 although it tends to be on the high side. We note that the

general behavior of our data is close to what is observed in
where we insert the fittethpa to obtainfpa®. The VGpp(t)  Refs.[28,41], but ourd is about three to six times larger than
is understood to have included the correction of the boundarheirs.
reflection discussed in Sec. IV in association with the deter- To alleviate the apprehension that the apparent singular
mination off .. The renormalization consta#t. is the same  behavior off pa? may be caused by certain unknown bound-
as the scalar renormalization constat The latter is de- ary effects on the source in our lattice with fixed boundary
termined from the matching of renormalization group invari- conditions, we consider the ratio &f in Eq. (34) andf  in
ant quark masses at fixed pseudoscalar rf@sand the de-  Eq. (20)
tails will be given elsewherg43]. We plot the renormalized

fpa? in Fig. 10 as a function ofmya. We see that it rises s
sharply at small quark mass. Since the log form in 88 foa2/f a= |imZP\/§mPaG’74A4P(p 00 (36)
falls off slower at larger quark mass, it gives a more stable fit P . 2m0aGA4P(5= 0t)

covering a larger range of the quark mass than the exponen-

tial form. Based on this observation, weffit in the log form This should cancel out the boundary effect on the source. We

o % s plot the ratiof ,a%f ,a as a function ofn’a®. We see from
fpa®=fpa”{1—-d[In(Amea/Aja®)+ 1]} +Bmpa,

(39 TABLE VI. Tpa?, &, andy?/DF as fitted forfpa? in Eq. (35)

where we inputA from the fit tom3 in Eq. (32). It turns out are listed.

that fits covering the whole range of 16 points hay#DF A 7 22 5 B 2/DF
h . 2 X pa X

greater than unity mainly due to the fact thea“ of the two Gev)

smallest quark masses are too high. Since errors of these t\/\(/o

points are large and they are more susceptible to systematics 0.0832) 0.354) 0.362) 0.93

errors from the boundary effect for such low pion masses, we g 0.0603) 0.487) 0.362) 0.93

shall ignore them and fit Eq35) with the other 14 points.
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20* Lattice with Overlap Fermions the chiral limit. For example, if one fits the pion mass by
3 ' T ' ' T choosing a time window which straddles over the kink in
Fig. 2, one will find that the pion mass squared does not
approach zero at the chiral limit with a linear extrapolation in
the quark mass. Interpreting it as due to the quenched chiral
25| . log, one may fit it with a chiral log form and obtain a posi-
tive 6 which can be misleading. In view of the fact that the
quenched chiral log fit 0|fnf,a2 from data obtained from the

~ shorter time range dBpp(f):O,t) as plotted in Fig. 5 has a
ﬂg 2+ . much smallerd than the present study and is consistent with
-~ that obtained in Ref{28], it would be useful to clarify that
{ the shifted real mode&he “would be” zero modepin the

Wilson action are not responsible for the observed quenched
{ i i chiral logs inm?a? and fpa? in this case
151 1 { I I : { i g T S : ;
Because of the chiral symmetry of the overlap fermion,
we obtain the non-perturbative renormalization consint
=1.589(4) from the axial Ward identity. We find it to be
fairly independent ofmga which is an indication that the
0 005 01 0.15 0.2 0.25 03 O(a?) error is small. The renormalized pion decay constant
moa f . has a positive slope with respect tgya. With a small
error (1.6% and devoid of the complication of the quenched
FIG. 11. Renormalizeflza?/f ,a vsm2a?. The solid line is afit  chiral log, f . is an ideal physical observable to set the scale
over the lowest 14 points. of the lattice.
We studied extensively the issue of the quenched chiral
Fig. 11 that the singular behavior is still visible ipa?/f .a log. We have clearly seen the quenched chiral log both in the
which confirms that the chiral log singularity is indeed pseudoscalar meson masses with equal quark masses and
present infp. their pseudoscalar decay constants. Various fits gite be
in the range of 0.15 to 0.4 which is in accord with that
VI. SUMMARY estimated from the doubley propagator approximation of
the quenched;’ loop which predicts it to be-0.18.
To conclude, we have studied the chiral properties of the \ve finally have a reliable tool in the overlap fermion to
pseudoscalar meson on a quenched lattice with overlap festudy the chiral symmetry properties of hadrons at low ener-
mions. The lattice size is 20with lattice spacinga  gies including the quenched chiral logs. One should go to

=0.148 fm set by the pion decay constént This gives a djfferent lattice spacings to study the continuum limit in the
physical size of 3.0 fm which is about 4 times the Comptonfytyre.

wavelength of the lowest mass pion.

We first clarified the role of the zero modes in the pseu-
doscalar meson propagator in association with the general- ACKNOWLEDGMENTS
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