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Chiral properties of pseudoscalar mesons on a quenched 204 lattice with overlap fermions
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The chiral properties of the pseudoscalar mesons are studied numerically on a quenched 204 lattice with the
overlap fermion. We elucidate the role of the zero modes in the meson propagators, particularly that of the
pseudoscalar meson. The non-perturbative renormalization constantZA is determined from the axial Ward
identity and is found to be almost independent of the quark mass for the range of quark masses we study; this
implies that theO(a2) error is small. The pion decay constantf p is calculated from which we determine the
lattice spacing to be 0.148 fm. We look for the quenched chiral log in the pseudoscalar decay constants and the
pseudoscalar masses and we find clear evidence for its presence. The chiral log parameterd is determined to
be in the range 0.15–0.4, which is consistent with that predicted from quenched chiral perturbation theory.
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I. INTRODUCTION

One of the main goals of lattice QCD is to understa
from first principles low-energy phenomenology as a con
quence of chiral symmetry. Recent advances in the form
tion of chiral fermions on the lattice hold great promise f
studying chiral symmetry of QCD at finite lattice spacin
@1#.

Neuberger’s overlap fermion@2#, derived from the overlap
formalism@3#, is such a chiral fermion on the lattice and h
been implemented numerically to study the chiral conden
@4–7#, quark mass@8,7#, renormalization constants@8,7,9#,
and short-distance current correlators@10# and to check chi-
ral symmetry@8,11# and scaling@8#. However, these studie
are limited to small volumes due to the large numerical c
associated with approximating the matrix sign function.
this paper we shall study physical observables, such as
pseudoscalar meson masses and pion decay constants
to the physicalu,d quark mass. As such, we need to work
a lattice which is at least 3 times larger than the Comp
wavelength of the pion with the smallest mass in order
alleviate finite volume effects. We work on a 204 lattice with
a50.148 fm as determined from the pion decay const
f p . This gives the lattice sizeLa53.0 fm and the smalles
pion mass is;280 MeV. Thus, the lattice size is;4 times
the Compton wavelength of the lowest-mass pion.

This paper is organized as follows. We will give the n
merical details of the calculation in Sec. II. In Sec. III, w
shall discuss the effect of the zero modes in the me
propagators. In view of the fact that the scalar condens
receives a contribution from the zero modes~which goes
away in the infinite volume limit! through the generalized
Gell-Mann–Oakes–Renner~GOR! relation, the pseudoscala
correlator should also be contaminated by the zero mo
We have observed the effect of the zero modes in the p
doscalar propagator at small quark mass. After clarifying
zero mode issue, we proceed to calculate the n
perturbatively determined renormalization constantZA from
the axial Ward identity and the pion decay constantf p . We
find that f p is free of the quenched chiral log singularity an
0556-2821/2002/65~5!/054507~12!/$20.00 65 0545
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has a small error in the chiral limit. Thus, it is a good qua
tity to set the lattice scale. We present the results in Sec.
In Sec. V, we explain our effort in searching for the predict
quenched chiral logs. We see the chiral logs in the pseu
scalar masses, the pseudoscalar matrix elementf P , and the
f P / f p ratio at very small quark masses. A summary is giv
in Sec. VI.

II. NUMERICAL DETAILS

For Neuberger’s overlap fermion@2#, we adopt the fol-
lowing form for the massive Dirac operator@9,12,13#:

D~m0!5S 12
m0a

2r D rD~r!1m0a, ~1!

where

D~r!511g5e~H !, ~2!

so that

D~m0!5r1
m0a

2
1S r2

m0a

2 Dg5e~H !, ~3!

where e(H)5H/AH2 is the matrix sign function andH is
taken to be the Hermitian Wilson-Dirac operator, i.e.,H
5g5Dw . HereDw is the usual Wilson fermion operator, ex
cept with a negative mass parameter2r51/2k24 in which
kc,k,0.25. We takek50.19 in our calculation which cor-
responds tor51.368. The massive overlap action is so d
fined so that the tree-level renormalization of mass and w
function is unity. The bare mass parameter,1 m0, is propor-

1Note that we used a different normalization in the action bef
in @8#. As a result the bare mass here is equal tor times the bare
mass in@8#.
©2002 The American Physical Society07-1
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TABLE I. Quark massm0a and number of gauge configurations~cfg.! are listed.

m0a 0.015 05 0.016 42 0.019 15 0.027 36 0.041 04 0.054 72 0.068 40 0.08
No. of cfg. 25 25 63 63 53 63 25 63

m0a 0.095 76 0.1094 0.1368 0.1642 0.1915 0.2189 0.2462 0.27
No. of cfg. 25 63 25 63 25 63 25 63
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tional to the quark mass without an additive constant wh
we have verified numerically in a previous study@8#.

We adopt the optimal rational approximation@14,8# to ap-
proximate the matrix sign function. The inversion of th
quark matrix involves nested do loops in this approximatio
It is found that it is cost effective to project out a relative
few eigenmodes with very small eigenvalues in the opera
H2 in order to reduce the condition number and speed up
convergence in the inner do loop@4,8#. At the same time, this
improves chiral symmetry relations such as the Gell-Man
Oakes–Renner relation@8#. However, it is shown@15# that
the density of these small eigenmodes grows aseAa with a
being the lattice spacing. As a result, it is very costly a
impractical to work on large volumes with the lattice spa
ings currently used. There are simply too many small eig
modes to be projected out.

For this reason we explore other options to clear t
hurdle. We have tested the tree-level tadpole-improv
Lüscher-Weisz gauge action@16# and find that the density o
these small eigenvalue modes is decreased to a point whe
becomes feasible to go to large volumes with a lattice siz
times the Compton wavelength of the lightest pion. We f
ther find that the anisotropic action@17# requires projection
of more small eigenvalues inH2 in order to achieve the sam
convergence in the inner loop than does the isotropic o
Thus, we decide to use the isotropic action. We also find
using the clover action with either sign requires the proj
tion of more small eigenvalue modes. Therefore we use
Wilson action forH in the Neuberger operator. On a 204

lattice with b57.60 tree-level tadpole-improved Lu¨scher-
Weisz gauge action, we project out 85 small eigenmod
Beyond these eigenmodes, the level density becomes la
As a result, the number of conjugate gradient steps is ab
345 for the inner loop and about 300 for the outer loo
While the number for the inner do loop seems to be fai
independent of the lattice volume, the number for the ou
do loop is about a factor of 2 larger than those for the Wils
gauge action on small volumes@8#.

Since the conjugate gradient algorithm accommoda
multiple masses with a minimum overhead, we calculated
quark masses ranging fromm0a50.015 05 tom0a50.2736
which are listed in Table I together with the number of co
figurations for each mass.

From the string tension withAs5440 MeV, we find that
a50.13 fm. However, as we shall see later in Sec. IV, t
scale determined fromf p is 0.148~2! fm which makes the
physical length of the lattice to be 3.0 fm. The smallest p
mass turns out to be;280 MeV so that the size of the
lattice is;4.1 times of the Compton wavelength of the low
est mass pion and more than 4 times for the heavier one

We adopt the periodic boundary condition for the spa
05450
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dimensions and the fixed boundary condition in the time
rection so that we can have effectively a longer range of ti
separation between the source and sink to examine the
son propagators with small quark masses which lead
longer correlation lengths. The source of the meson inter
lation field is placed at the third time slice and we consid
the sink as far as the 16th time slice to mitigate the bound
effect. This gives us a time separation of 13.

We have varied statistics for different quark masses.
the 16 cases, seven have 25 gauge configurations, one
53, and the remaining eight have 63 configurations. In or
to carry out correlated fits to extrapolate observables to
physical pion mass, we construct the covariance matrix
embedding the one with smaller dimension, e.g. 25 and
into the one with dimension 63 in a block diagonal form. F
example, the covarianceCi j for the one with 25 configura-
tions is constructed so thatCi j ( i<25,j .25)50, C( i .25,j
<25)50 andCi j ( i , j .25)5d i j .

III. ZERO MODE EFFECTS IN MESON PROPAGATORS

The quark zero mode is known to contribute to th
vacuum scalar densitŷc̄c& on a finite volume. The latter
can be written in the following form for small quark mas2

m0:

2^c̄c&5
^uQu&
m0V

1c01c1m0 , ~4!

whereQ is the topological charge which, according to th
Atiya-Singer theorem, is the difference between the num
of left-handed and right-handed zero modes~i.e., Q5n2

2n1) and has been shown to hold for overlap fermions
other local fermion actions which satisfy the Ginspar
Wilson relation@18,19#. Since^uQu& grows asAV, the zero
mode contribution vanishes in the infinite volume limit whi
keepingm0 fixed at a non-zero value. Thus the quark co
densate which is the infinite volume and zero mass limit

^c̄c& is represented byc0 in Eq. ~4!. However, on a fixed
finite volume lattice, this zero mode contribution is diverge
for small enoughm0. This was first observed in the domain
wall formulation@20# and is also seen in the overlap fermio
@21#. Here we reproduce it in Fig. 1 which shows the dive
gent part of̂ c̄c& from the zero modes for a 63312 lattice
with the Wilson gauge action atb55.7.

2We shall address the quenched chiral log issue separatel
Sec. V.
7-2
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CHIRAL PROPERTIES OF PSEUDOSCALAR MESONS ON . . . PHYSICAL REVIEW D65 054507
We see from Fig. 1 thatc0 is non-zero in this range of th
quark mass and upon extrapolation to the infinite volu
before taking the chiral limit defines the quark condens
2S. However, if one keeps the volume fixed and lets
quark mass approach zero, e.g.,m0a,0.001, it is then found
@4,5,21# thatc0 becomes zero. It is known@22# that when the
size of the lattice is much smaller than the pion Comp
wavelength, i.e.,L!1/mp , the constant term vanishes an

^c̄c& is proportional tom0S2V for small masses aside from
the^uQu&/m0V term. Using finite size scaling, the chiral co
densateS can be extracted@5#.

While we have a reasonably good understanding of
role of zero modes in̂c̄c&, their role in the hadron propa
gators is only beginning to be investigated in the doma
wall formalism @23# and the overlap formalism@6,7# and its
detailed influence on the hadron propagators is not fully
derstood. We shall investigate it in the pseudoscalar me
channel. There has been some concern about the behav
the pion mass. It is not clear if it approaches zero in a fin
volume in the chiral limit. In fact, one finds that the pio
mass squared appears to approach a non-zero value on
lattices@24,25#. To understand the situation, we first exami
the generalized Gell-Mann–Oakes–Renner~GOR! relation

2~2m0!2

V E d4xd4y^pa~x!pa~y!&522m0^c̄c&. ~5!

The left-hand side~lhs! of Eq. ~5! has a contribution of
2^uQu&/V as does the right-hand side~rhs!. Assuming the
remainder of the pseudoscalar susceptibility is dominated
the pion, it is approximately2 f p

2 mp
2 . Comparing with Eq.

~4!, we get

f p
2 mp

2 52m0c012m0
2c1 . ~6!

From this we see thatmp
2 approaches zero asm0 for those

volumes wherec0 is non-zero. On the other hand, when t
m0 is so small thatc0 becomes zero for certain fixed volum
the rhs of Eq.~6! is survived by the next leading term withc1

which is proportional tom0
2. As a result, one expects thatmp

FIG. 1. ^c̄c& as a function of the quark mass. We used
configurations of a 63312 lattice with Wilson gauge action atb
55.7. Herema5m0a/2r.
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to be linearly proportional tom0. Here we have ignored the
complication due to the quenched chiral log which we w
address in Sec. V.

Next, we turn to the zero-momentum pseudoscalar pro
gator *d3x^pa(x)pa(0)& which has two terms due to th
zero modes as pointed out in the study of domain wall f
mions @23#

E d3x^p~x!p~0!&

5E d3xF (
i , j 5zero modes

tr„c j
†~x!c i~x!…tr„c i

†~0!c j~0!…

m0
2

12 (
i 50,l.0

tr„cl
†~x!c i~x!…tr„c i

†~0!cl~0!…

m0~l21m0
2!

G
1

z^0up~0!up& z2e2mpt

2mp
. ~7!

The first term is purely the zero-mode contribution. The s
ond term is the cross term between the zero modes and
nonzero modes. We have used the property that the non
modes come in pairs which are related byg5, i.e., g5cl

5c2l . Upon integrating the propagator with respect
time, we find

E d4x^p~x!p~0!&5

(
i 50

tr„c i
†~0!c i~0!…

m0
2

1

(
i 50,l.0

d il tr„c i
†~0!cl~0!…

m0~l21m0
2!

1
z^0up~0!up& z2

2mp
2

. ~8!

Comparing with the generalized GOR relation in Eq.~5!, we
see that the first term corresponds to the^uQu&/m0V term in
Eq. ~4! and the second term vanishes due to the orthogona
between the zero modes and the non-zero modes. In e
case, we expect that the number of zero modes grows
AV and the eigenfunctionc(0)}1/AV. As a result, both
zero-mode terms in Eqs.~7! and ~8! decrease with volume
like 1/AV and are finite volume artifacts.

The most straightforward way of isolating the zero mo
contribution is to calculate their eigenvectors and proj
them out as is done in Ref.@26#. However, this is very costly,
as costly as calculating the quark propagator itself.

We show the pseudoscalar propagator for a light qu
mass (m0a50.019 15) in Fig. 2 and we see that there a
pears a kink att/a;8 –9. ~The source is placed att0 /a53
so that it appears at (t1t0)/a;11212.! To further explore
its origin, we separate the 63 configurations into 19 w
trivial topology~i.e.,Q50) and 44 with non-trivial topology
~i.e.,Q5” 0) and plot the respective pseudoscalar propaga
in Figs. 3 and 4.
7-3
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We see that the propagator on theQ50 configurations
~Fig. 3! has a single exponential all the way fromt/a55 to
14. Upon fitting a single exponential in this range, we fi
mPa50.153(12). On the other hand, the propagator of
Q5” 0 configurations~Fig. 4! still has a pronounced kink a
t/a;8. When we fit it in the ranget/a58 –14, the mass is
mPa50.146(32) which is quite consistent with that from th
Q50 configurations. On the other hand, when we fit t

FIG. 2. Pion propagator form0a50.019 15 for all 63 configu-
rations. The source is placed att0 /a53

FIG. 3. Pion propagator form0a50.019 14 for 19 configura-
tions with Q50.
05450
e

time ranget/a from 4 to 8,mPa50.245(58) which is quite a
bit higher than that of theQ50 configurations. We take this
as evidence that the zero-mode contributions, the comb
direct and cross terms, fall off faster int/a than the pseudo-
scalar mass. We can thus use the time separation as the
to obtain the masses and decay constants of the phy
pseudoscalar mesons. Now we can understand why in
previous studies ofmP , themP

2 does not approach zero wit
the quark mass@24,25#. In Ref. @24# the lattice size is 63

312 with b55.7. Since it uses the fixed boundary conditi
in the time direction, the maximum usable time separation

FIG. 5. mP
2a2 vs m0a with a fit of mPa in the window of t/a

5529. The dotted line is a fit linear and quadratic inm0a. The
solid line is a fit including the chiral log.

FIG. 4. The same as in Fig. 3 for 44 configurations withQ5” 0.
7-4
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CHIRAL PROPERTIES OF PSEUDOSCALAR MESONS ON . . . PHYSICAL REVIEW D65 054507
about 7. This translates into time separation of;9 on our
lattice. In Ref.@25# the lattice size is 123324 with b55.9. In
this study the authors use the periodic boundary conditio
time, time slices up to 12 are fitted which corresponds
;10 on our lattice. In either case, the fitted time range
expected to be contaminated by the zero mode contribu
and result in a higher mass for a given quark mass. To ve
this, we fit our data in the time ranget/a55 –9 and plot the
resulting mP

2a2 in Fig. 5. We see that they indeed do n
approach zero with a fit linear and quadratic inm0a ~dashed
line!, similar to those shown in Refs.@24,25#. One may at-
tempt to interpret the data to include a chiral log and fo
the pion mass to go to zero in the chiral limit. This can
misleading. We shall defer the discussion of the complicat
due to the quenched chiral log in Sec. V.

In principle, one can overcome the zero mode problem
fitting the zero momentum pion propagatorGPP(pW 50,t) in a
time range beyond the localized zero mode contributi
such as beyond (t1t0)/a.12 in Fig. 2. Unfortunately, our
data at larger time slices are tainted by the reflection from
fixed boundary at (t1t0)/a520 when the quark mass i
small so that the fit in the limited time window to avoid bo

FIG. 6. PropagatorGA4P(pW 50,t) for m0a50.019 15 for all 63
configurations.
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the zero mode and the boundary reflection is unsettling
this case. For this reason, we examine the propag
GA4P(pW 50,t) instead. Since the zero modes on one gau
configuration have the same chirality, the pure zero mo
contribution @i.e., the direct zero mode contribution whic
corresponds to the first term on the right-hand side of
~7!# vanishes. The cross-term between the zero modes
the non-zero modes does not vanish, but is expected to
small due to cancellations. We plot in Fig. 6GA4P(pW 50,t)

for the same quark massm0a50.019 15 and we do not see
kink in the range 5,(t1t0)/a,15 as is inGPP(pW 50,t) in
Fig. 2. Thus, we shall calculate the pseudoscalar masses
GA4P(pW 50,t). The results ofmP

2a2 so obtained are plotted in
Fig. 7.

Comparing with Fig. 5, we note thatmP
2a2 in Fig. 7 which

are free from the zero mode contamination are lower than
corresponding ones in Fig. 5 for small quark masses. H
mP

2a2 approaches zero in the chiral limit is complicated
the presence of the quenched chiral log. We shall postp
this discussion until Sec. V, except to mention that the so
line in Fig. 7 is the fit with the chiral log and the dotted lin
is the fit with linear and quadratic terms inm0a.

The zero mode contributions to mesons can be written

FIG. 7. mP
2a2 vs m0a calculated fromGA4P(pW 50,t) The linear

plus quadratic fit~dotted line! and the chiral log fit~solid line! from
Eq. ~32! with Lx50.8 GeV are discussed in Sec. V.
E d3x^M ~x!M ~0!&uzero modes

52E d3xF (
i , j 5zero modes

tr„c j
†~x!g5Gc i~x!…tr„c i

†~0!Ḡg5c j~0!…

m0
2

12 (
i 50,l.0

tr„cl
†~x!g5Gc i~x!…tr„c i

†~0!Ḡg5cl~0!…

m0~l21m0
2!

G ,

~9!
7-5
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DONG, DRAPER, HORVA´ TH, LEE, LIU, AND ZHANG PHYSICAL REVIEW D 65 054507
whereG and Ḡ are the gamma matrices for the correspon
ing meson interpolation fields. For the pseudoscalar me
as we discussed above,G52Ḡ5g5. For the scalar meson
~the connected insertion part!, G5Ḡ51. Since the zero
modes are the eigenstates ofg5, i.e., g5c i 5056c i 50, the
zero mode contribution in the scalar propagator has a n
tive sign from that in the pseudoscalar propagator. Thus,
suggested@23,6,7# to consider

E d3x@^p~x!p~0!&1^s~x!s~0!&# ~10!

where the zero-mode contributions cancel and at larget/a it
should be dominated by the pseudoscalar. However, the
a problem. As will be shown in a separate publication@27#,
the large time part of the isovector-scalar propagator for
quark mass range that we are concerned about turns out
negative. It is pointed out in a study with pole shifting in th
Wilson action@28# that it is dominated by the would-beh8
andp intermediate state which is negative due to quench
In the intermediate time region, there is still the contributi
from h8 andp intermediate state besides thea0. As a con-
sequence, the addition of the pseudoscalar and scalar m
is not a viable solution to obtaining the pseudoscalar mas
is also suggested that the axial-vector interpolation field w
G5Ḡ5g4g5 does not have the direct term contribution fro
the zero modes since all the zero modes have the s
chirality in a given gauge configuration. However, the s
ond term in Eq.~9! may still have a contribution. Since it i
a cross term, it might be small due to cancellations. Unf
tunately, our data on thêA4A4& correlator are much noisie
than the ^pp& correlator, since^0uA4up(0)&5A2mp f p

which diminishes when the pion mass is small. We can
conclude anything from them.

It appears that, short of projecting out the zero mod
from the meson propagators, fitting the pseudoscalar m
from the propagatorGA4P(pW 50,t) is probably the only prac-
tical way of getting reasonably reliable and accurate pseu
scalar masses for our lattice with fixed boundary conditio

IV. ZA AND PION DECAY CONSTANT F p

It has been pointed out in our earlier work@8# that the
renormalization constantZA for the axial current Am

5c̄@ igmg5(12D/2r)(t/2)#c can be obtained directly
through the axial Ward identity

ZA]mAm52Zmm0ZPP, ~11!

whereP5c̄@ ig5(12D/2r)(t/2)#c is the pseudoscalar den
sity. SinceZm5ZS

21 and ZS5ZP due to the fact that the

scalar densityc̄(12D/2r)(t/2)c and the pseudoscalar de
sity P are in the same chiral multiplet,Zm andZP cancel in
Eq. ~11! and one can determineZA to O(a2) non-
perturbatively from the axial Ward identity using the ba
massm0 and bare operatorP. To obtainZA , we shall con-
sider the on-shell matrix elements between the vacuum
the zero-momentum pion state for the axial Ward identity
05450
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ZA^0u]mAmup~pW 50!&52m0^0uPup~pW 50!&, ~12!

where the matrix elements can be obtained from the ze
momentum correlators

G]4A4P~pW 50,t !5K (
xW

]4A4~x!P~0!L
GPP~pW 50,t !5K (

xW
P~x!P~0!L . ~13!

The non-perturbativeZA is then

ZA5 lim
t→`

2m0GPP~pW 50,t !

G]4A4P~pW 50,t !
. ~14!

There has been extensive study@29–32# of the O(a) im-
provement of the Wilson action and composite operators
relation to the chiral symmetry and axial Ward identity. It h
been shown@30# that in the improved mass-independe
renormalization scheme, the renormalized improved a
current and pseudoscalar density have the following fo
from anO(a) improved action:

Am
R5ZA~11bAmqa!$Am1cAa]mP%,

PR5ZP~11bPmqa!P, ~15!

where mq5m02mc is the subtracted quark mass andcA ,
bA , andbP are improvement coefficients. The renormaliz
tion constantsZA andZP are functions of the modified cou
pling g̃0

25g0
2(11bgmqa). Now that the overlap fermion is

O(a) improved@33#, it satisfies the Ginsparg-Wilson relatio
@34# and the quark mass is not additively renormalized. A
result,bA5cA5bP50. The renormalization constantZA de-
termined from Eq.~14! has onlyO(a2) error as a conse
quence.ZA thus computed for all the quark masses are p
ted in Fig. 8 as indicated by the open circles. We see
there is still an appreciableO(a2) error. Given that the time
derivative itself inG]4A4P(pW 50,t) invokes anO(a2) error, it

would be better to adopt a definition forZA which is devoid
of this superfluousO(a2) error. This can be achieved b
noticing that, at larget where the pion state dominates th
propagatorG]4A4P(pW 50,t), one can effectively make the
substitution

G]4A4P~pW 50,t ! →
t→`

mpGA4P~pW 50,t !. ~16!

Consequently, Eq.~14! becomes

ZA5 lim
t→`

2m0GPP~pW 50,t !

mpGA4P~pW 50,t !
. ~17!

We plot the results ofZA from Eq.~17! in Fig. 8. Save for
the last two points at the smallest masses (m0a50.015 05
and 0.016 42!, the errors are small. We should point out th
it is conspicuously flat as a function ofm0a indicating that
7-6
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the O(a2) error from the action and the operators is sma
We fit them in the formZA1bm0

2a2 and found thatZA

51.589(4),b50.175(73) withx2/DF50.30. We see tha
ZA is determined to the precision of a fraction of 1%. We fi
it to be larger than the perturbative calculation@12# which
gives ZA(m51/a)51.213 for Wilson gauge action withb
55.85 which has about the same string tension as our ga
configurations.ZA from both Eqs.~14! and~17! are tabulated
in Table II.

For the pion decay constant, one can look at the ratio
the zero-momentum correlator

FIG. 8. ZA vs quark massm0a. The results from Eq.~14! are
indicated bys and those from Eq.~17! are indicated byd.

TABLE II. Renormalization constantZA from Eq. ~14! ~column
2! and Eq.~17! ~column 3!.

m0a ZA @Eq. ~14!# ZA @Eq. ~17!#

0.2736 1.490~2! 1.605~4!

0.2462 1.499~3! 1.594~6!

0.2189 1.511~2! 1.597~4!

0.1915 1.519~3! 1.589~8!

0.1642 1.532~2! 1.596~5!

0.1368 1.539~4! 1.585~11!

0.1094 1.551~2! 1.592~8!

0.09576 1.552~4! 1.587~12!

0.08208 1.560~2! 1.593~8!

0.06840 1.561~5! 1.594~13!

0.05472 1.569~3! 1.586~12!

0.04104 1.572~5! 1.595~15!

0.02736 1.576~8! 1.604~17!

0.01915 1.583~17! 1.585~20!

0.01642 1.585~72! 1.618~60!

0.01505 1.596~105! 1.598~114!
05450
.

ge

f

GA4P~pW 50,t !5K (
xW

A4~x!P~0!L , ~18!

andGPP(pW 50,t),

f pa5 lim
t→`

ZAGA4P~pW 50,t !

AmpaGPP~pW 50,t !
empt/2. ~19!

For our definition of the isovector axial and pseudosca
currents, the experimentalf p is 92.4 MeV.

Combining withZA from Eq. ~14!, we obtain

f pa5 lim
t→`

2m0aAGPP~pW 50,t !GA4P~pW 50,t !

AmpaG]4A4P~pW 50,t !
empt/2.

~20!

We first fit the pion masses fromGA4P(pW 50,t) and feed

them into Eq.~20!. Unlike the case withZA in Eqs.~14! and
~17! where the boundary effects on the common source
the interpolation fieldP in the numerator and denominato
cancel, they do not cancel inf p . To correct for this, we

replace AGPP(pW 50,t) with GPP(pW 50,t)empt/2/
AGPP„pW 50,(Nt11)a2t0…e

mp„(Nt11)a2t0…, which should get
rid of the boundary effect that affects the matrix eleme
^0uPup& associated with the source inGPP . The errors of
the ratio are obtained with the jackknife method. We plot t
result in Fig. 9 as a function ofm0a as open circles. We also
tabulate them in Table III together with the pion mass co
puted fromGA4P(pW 50,t).

FIG. 9. Renormalizedf pa vs quark massm0a.
7-7
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TABLE III. Pion masses obtained fromGA4P(pW 50,t) are listed together withf pa from Eq.~20! ~column
4!, Eq. ~21! ~column 5!, and f Pa2 from Eq. ~34!.

m0a mpa mp
2 a2 f pa @Eq. ~20!# f pa @Eq. ~21!# f Pa2

0.2736 0.705~4! 0.497~6! 0.0925~10! 0.0991~10! 0.1273~13!

0.2462 0.660~7! 0.436~9! 0.0896~23! 0.0952~23! 0.1192~28!

0.2189 0.620~4! 0.384~5! 0.0883~12! 0.0929~11! 0.1155~14!

0.1915 0.573~8! 0.328~9! 0.0852~24! 0.0893~31! 0.1082~38!

0.1642 0.529~7! 0.280~7! 0.0839~14! 0.0869~13! 0.1048~16!

0.1368 0.477~15! 0.228~14! 0.0813~33! 0.0837~33! 0.0983~39!

0.1094 0.429~8! 0.184~7! 0.0794~13! 0.0810~19! 0.0963~22!

0.09576 0.399~17! 0.159~14! 0.0784~28! 0.0794~37! 0.0934~43!

0.08208 0.374~9! 0.140~7! 0.0770~13! 0.0779~21! 0.0939~25!

0.06840 0.343~19! 0.118~13! 0.0755~26! 0.0762~40! 0.0927~49!

0.05472 0.312~9! 0.0973~56! 0.0744~15! 0.0753~18! 0.0942~30!

0.04104 0.272~12! 0.0740~65! 0.0729~18! 0.0733~25! 0.0933~32!

0.02736 0.236~17! 0.0557~80! 0.0722~19! 0.0728~29! 0.1055~34!

0.01915 0.216~16! 0.0467~69! 0.0721~26! 0.0709~27! 0.1222~42!

0.01642 0.218~47! 0.0475~205! 0.0714~44! 0.0708~58! 0.145~12!

0.01505 0.209~53! 0.0437~221! 0.0734~50! 0.0738~68! 0.152~14!
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As in the case ofZA defined fromG]4A4P(pW 50,t), f p

defined from Eq.~20! containsO(a2) error invoked by the
time derivative. We shall again make the substitution in E
~16! and arrive at

f pa5 lim
t→`

2m0aAGPP~pW 50,t !mpaempt/2

~mpa!2
. ~21!

The results are listed in Table III and plotted in Fig. 9
d. The difference from thes reflects theO(a2) error due to
the time derivative inG]4A4P(pW 50,t). With all 16 data
points in a linear fit, we find

f pa50.0691~11!10.109~56!m0a, ~22!

with x2/DF50.03. We note that it yields an error of on
1.6% in the chiral limit. Given that it is a physical observab
from the fermion operator without the chiral logarithm in
quenched theory@35# and with such high precision, it is a
ideal quantity to set the scale of the lattice. Comparing w
the experimental valuef p592.4 MeV, we determine the
scale of our lattice to bea50.148(2) fm. This is about 14%
higher than that determined from the string tension w
As5440 MeV and 20% larger than that determined fro
r 0. This is quite consistent with other quenched calculatio

Our results onf p and its quark mass dependence are c
sistent with those calculated with the domain-wall fermi
@23# and the overlap fermion@7# on smaller lattices and
higher pion masses.

V. QUENCHED CHIRAL LOGS

In the quenched approximation of QCD, one ignores
virtual quark loops. One of the consequences is that
flavor-singlet meson propagator~which we shall refer to as
05450
.

h

s.
-

e
e

h8 even though the physicalh8 is not completely flavor-
singlet and has octet mixture! has a double pole in the Ven
eziano model for the U~1! anomaly@36,37#. As such, it does
not move the mass of the would-be Goldstone boson to
largeh8 mass. Consequently, this leads to infrared singu
h8 loops with the hair-pin type diagrams in the renormaliz
tion of hadron masses and certain matrix elements and
alters their chiral behaviors from those of full QCD wit
dynamical fermions.

The first study of the anomalous chiral behavior was do
by Sharpe@35# and Bernard and Golterman@38# in quenched
chiral perturbation theory. They predicted the chiral log p

thologies in the pseudoscalar meson masses,^c̄c&, the
f K / f p ratio, etc. The first evidence of the chiral log wa
observed by the CP-PACS Collaboration@39# in the ratio of
pseudoscalar meson masses with two unequal quark ma
with the Wilson fermion. They obtain the chiral log param
eterd50.821.2. A more extensive study@40# which invokes
the shifting of the real poles of the quark propagator to i
prove the otherwise poor chiral properties of the Wilson f
mion near the chiral limit was carried out to examine t
quenched chiral logs in the pseudoscalar masses and
pseudoscalar decay constants, obtaining consistent re
with d50.06560.013. The same quenched chiral log is a
observed in the ratio ofmp

2 /mq with the Kogut-Susskind
action@41# with d50.06160.03. All of them are small com-
pared to that expected from the coupling of the would-
Goldstone bosons~or quark loops in the pseudoscalar cha
nel! which is responsible for theh8 mass of the U~1!
anomaly. Recently, the small nonzero eigenvalues of
overlap Dirac operator were calculated in a deconfined ph
@42# and it was found that the chiral condensate diverge
the infinite volume limit indicating a quenched singulari
consistent with the quenched chiral perturbation predict

^c̄c&}m2d/(11d).
7-8
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CHIRAL PROPERTIES OF PSEUDOSCALAR MESONS ON . . . PHYSICAL REVIEW D65 054507
Given that the overlap fermion has the promise of ex
chiral symmetry on the lattice, it is natural to look for the
chiral singularities and check if the quenched chiral logs s
in the Wilson and Kogut-Susskind fermions can be verifi
with the overlap action. The first attempt to extract the ch
log from the pion mass on several small volumes was inc
clusive @8#. We shall examine them here on a much larg
volume.

The behavior of the quenched chiral logs can be s
from the sigma model@40# with U(3)3U(3) where the
pseudoscalar field is represented by

U5ef0 / fei (a51
8 lafa / f , ~23!

where la is the SU~3! flavor matrix andfa are the octet
Goldstone boson fields. The U~1! part is described byh8
field with f05A2/Nfh8/ f , whereNf is the number of flavors
which is 3 in our case. The effect of the chiral logs can
understood as the renormalization effect of integrating
the h8 @40#. The resultingSU(3)3SU(3) will be repre-
sented by the renormalizedU

U5e2^f0
2&/2f 2

e(a51
8 lafa / f . ~24!

In the quenched approximation, the integral representing
h8 loop involves only the hair-pin diagram of two would-b
singlet Goldstone boson~we shall refer to it ash and it has
the same mass asp) propagators

^f0
2&5

2

VNf
E d4x^h~x!h~x!&5E d4p

~2p!4Nf

2m̄0
2

p21mp
2

5
2m̄0

2

16p2Nf
S ln

l2

mp
2

21D . ~25!

Therefore, the infrared singular part ofU in Eq. ~24! can be
represented byd

U5e2d ln mp
2
e(a51

8 lafa / f5S 1

mp
2 D d

e(a51
8 lafa / f , ~26!

where

d5
m̄0

2

16p2Nf f
2

. ~27!

From the Witten-Veneziano model of theh8 mass, m̄0
;870 MeV. This gives an estimate ofd50.183.

To see the effects on various physical quantities, one
first look at pseudoscalar density and axial current opera
@40#. In the sigma model,

c̄ ig5c}U2U†

c̄ igmg5c} i @U21]mU2~]mU21!U#. ~28!

With U given in Eq.~26!, one arrives at
05450
t

n
d
l
-

r

n

e
t

e
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rs

f P5^0uc̄ ig5cup~pW 50!&5S 1

mp
2 D d

f̃ P

f p5^0uc̄ igmg5cup~pW 50!&/A2mp5 f̃ p
~29!

where f P is the pseudoscalar decay constant andf p is the
axial decay constant andf̃ P and f̃ p are constants for smal
quark masses. Thus, one expects that thatf P is singular as
the quark masses approaches zero in the quenched app
mation; whereasf p remains a constant. From the axial Wa
identity in Eq.~11! and Eq.~29!, one expects

mp
2 }mq

f P

f p
}mqS 1

mp
2 D d

, ~30!

wheremq is the quark mass and therefore

mp
2 }mq

1/(11d) ~31!

which is the behavior predicted in quenchedxPT @35#.
Given mpa fitted from GA4P(pW 50,t) and listed in Table

III, we first fit them in the form in Eq.~31! for a range of
small quark mass points. We list the fittedd andx2/DF in
Table IV. We find thatd ranges from 0.145(66) to 0.24(12
Beyond this range of 8 to 11 smallest quark masses,
errors are greater than half of the fittedd value.

Since the form in Eq.~31! is limited to smallm0a, we
shall also fitmp

2 a2 with the form @38,39#

mp
2 a25Am0a$12d@ ln~Am0a/Lx

2a2!11#%1Bm0
2a2,

~32!

which allows a fit to cover the whole range of 16 qua
masses. The best fits which give stable values ofA andB and
with errors less than half of the fitted values ofd for a range
of Lx50.6 GeV to 1.4 GeV are listed in Table V.

TABLE IV. Quenched chiral logarithmic parameterd and
x2/DF as fitted frommp

2 a2 in Eq. ~31!.

No. of smallestm0a d x2/DF

8 0.24~12! 0.24
9 0.224~91! 0.22
10 0.163~75! 0.28
11 0.145~66! 0.28

TABLE V. Quenched chiral logarithmic parameterd andx2/DF
as fitted frommp

2 in Eq. ~32!.

Lx (GeV) A B d x2/DF

0.6 1.72~7! 3.0~8! 0.23~7! 0.18
0.8 1.42~11! 3.0~8! 0.28~11! 0.18
1.0 1.17~24! 3.0~8! 0.34~17! 0.18
7-9
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They are consistent with those fitted in the exponen
form, albeit with values ofd between 0.2 and 0.3 which ar
somewhat higher than those from the exponential form.

We plot the fit withLx50.8 GeV as a solid line in Fig
7. To check if there is indeed a bona fide quenched chiral
we fit mp

2 a2 alternatively with powers inm0a up to cubic
terms and find

mp
2 a251.65~5!m0a10.54~21!m0

2a2, x2/DF50.90,

mp
2 a251.88~10!m0a22.3~11!m0

2a217.8~30!m0
3a3,

x2/DF50.46. ~33!

The fit including the cubic term inm0a is shown in Fig. 7
as the dotted line. We see that in either case, thex2/DF is
larger than that with the quenched chiral log in Table
which is 0.18. From this, we conclude that the quench
chiral is seen in our data formp

2 a2.
We should point out that if we were to use themP

2a2 data
from the shorter time range such as the one witht/a55
29 as plotted in Fig. 5 and insist on fitting them with
power form in Eq.~31!, we would find that one can fit the
last 12 mass points withd50.05460.028 and x2/DF
50.98. This is plotted as the solid line in Fig. 5. This serv
as a caveat to show that one can misconstrue the contam
tion of the zero modes as the quenched chiral log.

Finally, we look for the chiral log inf P , which according
to Eq.~29! should grow in the form of (1/mp

2 )d. We calculate
the renormalizedf P from

f Pa25 lim
t/a@1

ZPAGPP~ t !2mPaemPt/2, ~34!

where we insert the fittedmPa to obtainf Pa2. TheAGPP(t)
is understood to have included the correction of the bound
reflection discussed in Sec. IV in association with the de
mination of f p . The renormalization constantZP is the same
as the scalar renormalization constantZS . The latter is de-
termined from the matching of renormalization group inva
ant quark masses at fixed pseudoscalar mass@9# and the de-
tails will be given elsewhere@43#. We plot the renormalized
f Pa2 in Fig. 10 as a function ofm0a. We see that it rises
sharply at small quark mass. Since the log form in Eq.~32!
falls off slower at larger quark mass, it gives a more stable
covering a larger range of the quark mass than the expo
tial form. Based on this observation, we fitf P in the log form

f Pa25 f̃ Pa2$12d@ ln~Am0a/Lx
2a2!11#%1Bm0a,

~35!

where we inputA from the fit tomP
2 in Eq. ~32!. It turns out

that fits covering the whole range of 16 points havex2/DF
greater than unity mainly due to the fact thef Pa2 of the two
smallest quark masses are too high. Since errors of these
points are large and they are more susceptible to system
errors from the boundary effect for such low pion masses,
shall ignore them and fit Eq.~35! with the other 14 points.
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Again, results with reasonably small errors andx2/DF less
than unity are reported in Table VI.

We see thatd obtained fromf Pa2 is consistent with those
determined frommp

2 a2. Combining all the fits frommp
2 a2

and f Pa2, d appears to span the range from 0.15 to 0
which is consistent with that predicted from the quenchedh8
loop in the chiral perturbation theory in Eq.~27! @35,28#,
although it tends to be on the high side. We note that
general behavior of our data is close to what is observe
Refs.@28,41#, but ourd is about three to six times larger tha
theirs.

To alleviate the apprehension that the apparent sing
behavior off Pa2 may be caused by certain unknown boun
ary effects on the source in our lattice with fixed bounda
conditions, we consider the ratio off P in Eq. ~34! and f p in
Eq. ~20!

f Pa2/ f pa5 lim
t→`

ZPA2mPaG]4A4P~pW 50,t !

2m0aGA4P~pW 50,t !
. ~36!

This should cancel out the boundary effect on the source.
plot the ratiof Pa2/ f pa as a function ofmp

2 a2. We see from

FIG. 10. Renormalizedf Pa2 vs quark massm0a. The solid line
is a fit excluding the two smallest quark masses withLx

50.8 GeV in Eq.~35!.

TABLE VI. f̃ Pa2, d, andx2/DF as fitted forf Pa2 in Eq. ~35!
are listed.

Lx f̃ Pa2 d B x2/DF

~GeV!

0.6 0.083~2! 0.35~4! 0.36~2! 0.93
0.8 0.060~3! 0.48~7! 0.36~2! 0.93
7-10
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Fig. 11 that the singular behavior is still visible inf Pa2/ f pa
which confirms that the chiral log singularity is indee
present inf P .

VI. SUMMARY

To conclude, we have studied the chiral properties of
pseudoscalar meson on a quenched lattice with overlap
mions. The lattice size is 204 with lattice spacing a
50.148 fm set by the pion decay constantf p . This gives a
physical size of 3.0 fm which is about 4 times the Compt
wavelength of the lowest mass pion.

We first clarified the role of the zero modes in the pse
doscalar meson propagator in association with the gene
ized Gell-Mann–Oakes–Renner relation. We find that
zero mode contribution to the pseudoscalar meson prop
tors extends to a fairly long distance in the time separa
and it is imperative to avoid it since it is a finite volum
effect. Otherwise, one might be led to wrong conclusio
about the behavior of the pion mass and decay constants

FIG. 11. Renormalizedf Pa2/ f pa vs mp
2 a2. The solid line is a fit

over the lowest 14 points.
.

. D
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the chiral limit. For example, if one fits the pion mass
choosing a time window which straddles over the kink
Fig. 2, one will find that the pion mass squared does
approach zero at the chiral limit with a linear extrapolation
the quark mass. Interpreting it as due to the quenched ch
log, one may fit it with a chiral log form and obtain a pos
tive d which can be misleading. In view of the fact that th
quenched chiral log fit ofmp

2 a2 from data obtained from the

shorter time range ofGPP(pW 50,t) as plotted in Fig. 5 has a
much smallerd than the present study and is consistent w
that obtained in Ref.@28#, it would be useful to clarify that
the shifted real modes~the ‘‘would be’’ zero modes! in the
Wilson action are not responsible for the observed quenc
chiral logs inmp

2 a2 and f Pa2 in this case.
Because of the chiral symmetry of the overlap fermio

we obtain the non-perturbative renormalization constantZA
51.589(4) from the axial Ward identity. We find it to b
fairly independent ofm0a which is an indication that the
O(a2) error is small. The renormalized pion decay const
f p has a positive slope with respect tom0a. With a small
error ~1.6%! and devoid of the complication of the quench
chiral log, f p is an ideal physical observable to set the sc
of the lattice.

We studied extensively the issue of the quenched ch
log. We have clearly seen the quenched chiral log both in
pseudoscalar meson masses with equal quark masses
their pseudoscalar decay constants. Various fits gived to be
in the range of 0.15 to 0.4 which is in accord with th
estimated from the doubleh propagator approximation o
the quenchedh8 loop which predicts it to be;0.18.

We finally have a reliable tool in the overlap fermion
study the chiral symmetry properties of hadrons at low en
gies including the quenched chiral logs. One should go
different lattice spacings to study the continuum limit in t
future.
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