454 research outputs found
Remarks on the Myers-Perry and Einstein Gauss-Bonnet Rotating Solutions
The Kerr-type solutions of the five-dimensional Einstein and
Einstein-Gauss-Bonnet equations look pretty similar when written in Kerr-Schild
form. However the Myers-Perry spacetime is circular whereas the rotating
solution of the Einstein-Gauss-Bonnet theory is not. We explore some
consequences of this difference in particular regarding the (non) existence of
Boyer-Lindquist-type coordinates and the extension of the manifold
Superpotentials from variational derivatives rather than Lagrangians in relativistic theories of gravity
The prescription of Silva to derive superpotential equations from variational
derivatives rather than from Lagrangian densities is applied to theories of
gravity derived from Lovelock Lagrangians in the Palatini representation.
Spacetimes are without torsion and isolated sources of gravity are minimally
coupled. On a closed boundary of spacetime, the metric is given and the
connection coefficients are those of Christoffel. We derive equations for the
superpotentials in these conditions. The equations are easily integrated and we
give the general expression for all superpotentials associated with Lovelock
Lagrangians. We find, in particular, that in Einstein's theory, in any number
of dimensions, the superpotential, valid at spatial and at null infinity, is
that of Katz, Bicak and Lynden-Bell, the KBL superpotential. We also give
explicitly the superpotential for Gauss-Bonnet theories of gravity. Finally, we
find a simple expression for the superpotential of Einstein-Gauss-Bonnet
theories with an anti-de Sitter background: it is minus the KBL superpotential,
confirming, as it should, the calculation of the total mass-energy of spacetime
at spatial infinity by Deser and Tekin.Comment: Scheduled to appear in Class. Quantum Grav. August 200
Conserved Charges of Higher D Kerr-AdS Spacetimes
We compute the energy and angular momenta of recent D-dimensional Kerr-AdS
solutions to cosmological Einstein gravity, as well as of the BTZ metric, using
our invariant charge definitions.Comment: 11 pages, references added, equation correcte
A note on the Deser-Tekin charges
Perturbed equations for an arbitrary metric theory of gravity in
dimensions are constructed in the vacuum of this theory. The nonlinear part
together with matter fields are a source for the linear part and are treated as
a total energy-momentum tensor. A generalized family of conserved currents
expressed through divergences of anti-symmetrical tensor densities
(superpotentials) linear in perturbations is constructed. The new family
generalizes the Deser and Tekin currents and superpotentials in quadratic
curvature gravity theories generating Killing charges in dS and AdS vacua. As
an example, the mass of the -dimensional Schwarzschild black hole in an
effective AdS spacetime (a solution in the Einstein-Gauss-Bonnet theory) is
examined.Comment: LATEX, 7 pages, no figure
On the mass of a Kerr-anti-de Sitter spacetime in D dimensions
We show how to compute the mass of a Kerr-anti-de Sitter spacetime with
respect to the anti-de Sitter background in any dimension, using a
superpotential which has been derived from standard Noether identities. The
calculation takes no account of the source of the curvature and confirms
results obtained for black holes via the first law of thermodynamics.Comment: minor changes; accepted by CQ
On matching conditions for cosmological perturbations
We derive the matching conditions for cosmological perturbations in a
Friedmann Universe where the equation of state undergoes a sharp jump, for
instance as a result of a phase transition. The physics of the transition which
is needed to follow the fate of the perturbations is clarified. We dissipate
misleading statements made recently in the literature concerning the
predictions of the primordial fluctuations from inflation and confirm standard
results. Applications to string cosmology are considered.Comment: 20 pages, latex (revtex), no figure
Normal modes for metric fluctuations in a class of higher-dimensional backgrounds
We discuss a gauge invariant approach to the theory of cosmological
perturbations in a higher-dimensonal background. We find the normal modes which
diagonalize the perturbed action, for a scalar field minimally coupled to
gravity, in a higher-dimensional manifold M of the Bianchi-type I, under the
assumption that the translations along an isotropic spatial subsection of M are
isometries of the full, perturbed background. We show that, in the absence of
scalar field potential, the canonical variables for scalar and tensor metric
perturbations satisfy exactly the same evolution equation, and we discuss the
possible dependence of the spectrum on the number of internal dimensions.Comment: 19 pages, LATEX, an explicit example is added to discuss the possible
dependence of the perturbation spectrum on the number of internal dimensions.
To apper in Class. Quantum Gra
Nonthermal radiation of rotating black holes
Nonthermal radiation of a Kerr black hole is considered as tunneling of
created particles through an effective Dirac gap. In the leading semiclassical
approximation this approach is applicable to bosons as well. Our semiclassical
results for photons and gravitons do not contradict those obtained previously.
For neutrinos the result of our accurate quantum mechanical calculation is
about two times larger than the previous one.Comment: 10 pages, 2 figures; 2 references added, few typos correcte
Colliding Bubble Worlds
We consider a cosmological model in which our Universe is a spherically
symmetric bubble wall in 5-dimensional anti-de Sitter spacetime. We argue that
the bubble on which we live will undergo collisions with other similar bubbles
and estimate the spectrum of such collisions. The collision rate is found to be
independent of the age of our Universe. Collisions with small bubbles provide
an experimental signature of this scenario, while collisions with larger
bubbles would be catastrophic.Comment: 7 pages, no figure
Radiation of Charged Particles by Charged Black Hole
The probability of a charged particle production by the electric field of a
charged black hole depends essentially on the particle energy. This probability
is found in the nonrelativistic and ultrarelativistic limits. The range of
values for the mass and charge of a black hole is indicated where the discussed
mechanism of radiation is dominating over the Hawking one.Comment: 10 pages, latex, 4 ps-figure
- …
