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Abstract

We compute the energy and angular momenta of recent D-dimensional Kerr-AdS

solutions to cosmological Einstein gravity, as well as of the BTZ metric, using our

invariant charge definitions.
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1 Introduction

Rotating solutions of cosmological Einstein gravity in D dimensions, Rµν = (D − 1) Λ gµν,

have been constructed recently [1, 2], extending earlier Λ = 0 solutions of [3], themselves

generalizations of the well-known D=4 metrics of [4] and [5], and of [6] in D=5. These

geometries provide a useful application of our recent generalized “conserved charge” def-

initions, which are also extensions – of the original ADM [7], and AD [8] charges – to

cover wider classes of actions [9, 11]: We will compute the energy and angular momenta of

these new solutions, as well as of the D = 3 BTZ metric as calculated within topologically

massive gravity.

Gravity theories have been historically endowed with a variety of seemingly different

charge definitions, with different degrees of applicability and coordinate invariance. This

topic has also seen much very recent activity, for example [12]. A summary and comparison

of some of them is given in [13] which also includes a computation of the charges for Kerr-

AdS black holes, using thermodynamic arguments; see also [14, 15]. Our results will agree

with those, but we emphasize that in a general context, certain coincidences between

charge definitions are suspect: For example, the frequently invoked “Komar” charges, are

in general not applicable, being highly gauge-dependent [16].

2 Mass and Angular Momenta of Kerr-AdS

Let us briefly recapitulate the formulations of [8, 9]. The field equations of any metric

model coupled to a (necessarily covariantly conserved) matter source τµν are

δI

δgµν

≡ Φµν(g, R,∇R, ..) = κτµν , (1)

where Φµν is an identically conserved tensor that can depend on curvatures and their

derivatives. Decompose the metric into the sum of a background “vacuum”, ḡµν (which

solves (1) for τµν = 0), plus a deviation hµν , not necessarily small, that vanishes sufficiently

rapidly far from the matter source: gµν = ḡµν + hµν . The field equations can be divided

into a part linear in hµν plus a non-linear remainder, which (with τµν) constitutes the total
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source Tµν . If the background ḡµν admits Killing vectors ξ̄µ, obeying ∇̄µξ̄ν + ∇̄ν ξ̄µ = 0,

then, up to normalization factors (which we shall fix later), the conserved Killing charges

are

Qµ(ξ̄) =

∫

M

dD−1x
√
−ḡT µν ξ̄ν =

∫

Σ

dSiFµi. (2)

Here Σ is a D− 2 dimensional space-like asymptotic hypersurface of the space M and Fµi

is an anti-symmetric tensor, whose explicit form is model-dependent. For Einstein’s theory

with a cosmological constant,

Qµ =
1

4ΩD−2GD

∫

Σ

dSi

{

ξ̄ν∇̄µhiν − ξ̄ν∇̄ihµν + ξ̄µ∇̄ih − ξ̄i∇̄µh

+hµν∇̄iξ̄ν − hiν∇̄µξ̄ν + ξ̄i∇̄νh
µν − ξ̄µ∇̄νh

iν + h∇̄µξ̄i
}

, (3)

where i takes values in 1, 2, ...D−2 and the charge is normalized as shown, by dividing with

the D-dimensional Newton’s constant and the solid angle. These charges are background

gauge invariant under the diffeomorphisms δζhµν = ∇̄µζν + ∇̄νζµ: δζQ
µ = 0.

Let us now calculate the conserved charges of the metrics [1] for D > 3. [We shall

treat the special D = 3 case at the end]. They have the Kerr-Schild form [17, 18]

ds2 = ds̄2 +
2M

U
(kµ dxµ)2 , (4)

in terms of the de Sitter metric

ds̄2 = −W (1 − Λ r2) dt2 + F dr2 +

N+ǫ
∑

i=1

r2 + a2
i

1 + Λ a2
i

dµ2
i +

N
∑

i=1

r2 + a2
i

1 + Λ a2
i

µ2
i dφ2

i

+
Λ

W (1 − Λ r2)

(

N+ǫ
∑

i=1

(r2 + a2
i ) µi dµi

1 + Λ a2
i

)2

. (5)

Here ǫ = 0/1 for odd/even, dimensions and D = 2N + 1 + ǫ. The null 1-form reads

kµ dxµ = F dr + W dt −
N

∑

i=1

ai µ
2
i

1 + Λ a2
i

dφi , (6)

with

U ≡ rǫ

N+ǫ
∑

i=1

µ2
i

r2 + a2
i

N
∏

j=1

(r2 + a2
j ), W ≡

N+ǫ
∑

i=1

µ2
i

1 + Λ a2
i

, F ≡ 1

1 − Λ r2

N+ǫ
∑

i=1

r2 µ2
i

r2 + a2
i

. (7)
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To find the energy and angular momenta corresponding to (4), we must compute the

charges Q0 for the corresponding Killing vectors: for the energy we shall take ξ̄µ = (−1,~0)

and each angular momentum has the appropriate unit entry (0, . . . 1i . . . 0). Then

Q0 =
1

4ΩD−2GD

∫

Σ

dSr

{

g00∇̄0hr0 + g00∇̄rh00 + h0ν∇̄rξ̄ν − hrν∇̄0ξ̄ν + ∇̄νh
rν

}

. (8)

Using the energy Killing vector, we obtain1

ED =
1

4ΩD−2GD

∫

Σ

dSr

{

g00g
rr∂rh

00 +
1

2
h00grr∂rg00 −

m

U
g00∂rg00 + 2m∂rU

−1

+
2m

U
grr∂rgrr −

m

U
grrkikj∂rgij +

m

U
gij∂rgij

}

. (9)

To compute ED, one needs the large r behavior of the integrand I of (9); since

g00 → WΛr2, F → −1

Λr2
, U → rD−3, kφ → aφ

r2 , (10)

then

I =
2m

rD−2
[(D − 1)W − 1] . (11)

For completeness, let us also note how the determinant is calculated,

detg = −W (1 − Λr2)F
N
∏

i=1

(r2 + a2
i )µ

2
i

1 + Λa2
i

detM . (12)

Here M is the matrix representing the coefficients of the form dµidµj in the metric, which

can be expressed as (no repeated index summation),

Mij = Aiδij + BiBj + CiCj (13)

where

Ai =
(r2 + a2

i )

1 + Λa2
i

, Bi =

√

(r2 + a2
N+ǫ)

1 + Λa2
N+ǫ

µi

µn

Ci =

√

Λ

W (1 − Λr2)
(
(r2 + a2

i )

1 + Λa2
i

− (r2 + a2
N+ǫ)

1 + Λa2
N+ǫ

)µi . (14)

1We are assuming that the background spacetime is AdS rather than dS, whose cosmological horizon
causes complications. Some of these issues were addressed in [8, 9]. For details of acceptable asymptotic
falloff to (A)dS in various dimensions, we refer to [10].
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Then we have

detM =

N+ǫ−1
∏

i=1

Ai

N+ǫ−1
∑

i=1

{B2
i

Ai

+
C2

i

Ai

+

N+ǫ−1
∑

j 6=i

B2
i C

2
i

AiAj

−
N+ǫ−1
∑

j 6=i

BiBjCjCi

AiAj

}

. (15)

Inserting (14) in the above equation, one gets

detM =
1

Wµ2
N+ǫ

N
∏

i=1

1

1 + Λa2
i

. (16)

Using equations (16,12,11) the energy of the D dimensional rotating black hole becomes

ED =
m

Ξ

D−1−ǫ
2

∑

i=1

{

1

Ξi

− (1 − ǫ)(
1

2
)

}

. (17)

where

Ξ ≡
D−1−ǫ

2
∏

i=1

(1 + Λa2
i ), Ξi ≡ 1 + Λa2

i . (18)

This expression reduces to the standard limits ai → 0 and Λ → 0, and agrees (up to a

constant factor) with those of [13, 14].

The computation of angular momenta follows along similar lines. Consider a given,

say that ith (which we call the φ) component, i.e., the Killing vector ξµ

(i) = (0, ..., 0, 1i, 0, ..).

Then the corresponding Killing charge becomes

Q0 =
1

4ΩD−2GD

∫

Σ

dSr

{

gφφ∇̄0hrφ − gφφ∇̄rh0φ + h0ν∇̄rξ̄ν − hrν∇̄0ξ̄ν

}

=
1

4ΩD−2GD

∫

Σ

dSr

{

− gφφg
rrg00∂rh

φ
0

}

. (19)

Once again the integrand can be calculated to be

I =
(D − 1)2maiµ

2
i

rD−2(1 + Λa2
i )

. (20)

Putting the pieces together, the angular momentum is

Ji =
mai

ΞΞi

. (21)
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This expression again agrees with [13, 14]. Note that, unlike in the energy expression, ǫ

does not appear here since even dimensional spaces have as many independent 2-planes as

the odd dimensional spaces with one lower dimension.2

Having computed the desired conserved charges (17,21) for Kerr-AdS spacetimes in

D > 3, let us briefly turn our attention to the D = 3 BTZ black hole [19]. This solution

has long been studied but we recompute the charges with our method for the sake of

completeness. The BTZ black hole differs from its higher dimensional counterparts in one

very important aspect: for it, AdS is not the correct-vacuum-background [19]. The full

metric is

ds2 = (M − Λr2)dt2 +
dr2

−M + Λr2 + a2

4r2

− adt dφ + r2dφ2 , (22)

The background metric corresponds to M = 0 and AdS corresponds to M = −1. Only

AdS with J = 0 is allowed for M < 0: the others have naked singularities. So we consider

M > 0 and compute the charges following our calculations above (about the M = 0

background.) We get the usual answers

E = M , J = a . (23)

BTZ black holes also solve the more general topologically massive gravity equations, where

the Einstein term is augmented by the Cotton tensor [20],

Gµν + Λgµν +
1

µ
Cµν = κτµν . (24)

Conserved charges in this model were obtained in [21], in terms of those of the Einstein

model Qµ
E ,

Qµ(ξ̄) = Qµ
E(ξ̄) +

1

2µ

∮

dSi

{

ǫµiβGL
νβ ξ̄ν + ǫνi

βGL
µβ ξ̄ν + ǫµνβGL i

β ξ̄ν

}

(25)

+
1

2µ
Qµ

E(ǫ∇̄ξ̄) ,

2For even dimensions, there is a nice relation between the energy and the angular momentum E =
∑

i

Ji

ai

.
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where Qµ
E(ǫ∇̄ξ̄) is the Einstein form but ξ̄ is replaced with its curl. Once the contributions

of the Cotton parts are computed the mass and the angular momentum of the BTZ black

hole reads:

E = M − Λa

µ
, J = a − M

µ
, (26)

a shift in values that may be compared with those for gravitational anyons [22], (linearized)

solutions of TMG but not of pure D=3 Einstein.

3 Mass and Angular Momenta in Higher Curvature

Models

We turn now to a slightly more formal exercise, which is to indicate the stability of our

generic charge definition framework as it applies to a wider range of models, specifically

higher derivative gravities. While Kerr-like solutions to R + R2 gravity models have yet to

be discovered, it is not unlikely that they would approach the Einstein ones asymptotically.

In that case, we could compute their conserved charges-defined as integrals at infinity, using

the definitions for generic quadratic models [9]. Let us stick to the quadratic models of the

form3

I =

∫

dD x
√
−g

{ R

2κ
+ 2Λ0 + αR2 + βR2

µν + γ(R2
µνρσ − 4R2

µν + R2)
}

. (27)

This model allows constant curvature spacetimes with an effective cosmological constant

given as

Λ = − 1

4f(α, β, γ)κ

{

1 ±
√

1 + 8κf(α, β, γ)Λ0

}

for f(α, β, γ) 6= 0 , (28)

where

f(α, β, γ) =
(D − 4)

(D − 2)2
(Dα + β) +

γ(D − 4)(D − 3)

(D − 2)(D − 1)
. (29)

3Note that we changed normalization of the cosmological constant compared to the previous section.
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When the bare cosmological constant vanishes (Λ0 = 0 ), (A)dS spaces are still allowed

and one has the + sign branch in (28). Conserved charges in this model, which we quote

below, were defined in [9]

Qµ(ξ̄) =
{1

κ
+

4ΛDα

D − 2
+

4Λβ

D − 1
+

4Λγ(D − 4)(D − 3)

(D − 2)(D − 1)

}

∫

dD−1 x
√
−ḡξ̄νGµν

L

+(2α + β)

∫

dSi

√
−g

{

ξ̄µ∇̄iRL + RL∇̄µ ξ̄i − ξ̄i∇̄µRL

}

+β

∫

dSi

√
−g

{

ξ̄ν∇̄iGµν
L − ξ̄ν∇̄µGiν

L − Gµν
L ∇̄iξ̄ν + Giν

L ∇̄µξ̄ν

}

. (30)

where Gµν
L and RL are the linear parts of the Einstein tensor and the scalar curvature,

respectively. The second and the third line vanish for Einstein spaces. The first line,

on the other hand is just a factor times the cosmological Einstein theory’s charges (3).

Therefore for asymptotic Kerr-AdS solutions, their conserved charges are given by the first

term in (30), under the condition (28). Let us specifically consider the popular Einstein–

Gauss–Bonnet theory, α = β = 0. Also, implementing the condition (28) (with the + sign)

we have,

Qµ = −
√

1 + 8κf(γ, 0, 0)Λ0
1

κ

∫

dD−1 x
√
−ḡξ̄νGµν

L . (31)

Although the energy seems to have the wrong sign, this is a red herring: As shown in [23],

for the non-rotating case the exact metric reads

ds2 = g00dt2 + grrdr2 + r2dΩD−2 (32)

−g00 = g−1
rr = 1 +

r2

4κγ(D−3)(D−4)

{

1 ±
{

1 + 32γκ(D−3)(D−4)
m

(D−2)rD−1

}
1

2

}

, (33)

whose asymptotic forms branch into Schwarzschild and Schwarschild-de-Sitter respectively,

−g00 = 1 − r0

rD−3
, −g00 = 1 +

4m

(D − 2)
rD−3 +

r2

γ(D − 3)(D − 4)
. (34)

We see that SdS branch comes with the “wrong” sign compared to the usual Schwarzschild

one. Therefore, the minus sign in the energy becomes positive once Gµν
L is explicitly com-

puted. We conclude that the conserved charges in the Einstein–Gauss–Bonnet theory for
8



such asymptotic solutions would be simply proportional to those of (17, 21) cosmological

gravity:

EGB =
√

1 + 8κf(γ, 0, 0)Λ0 ED Ji(GB) =
√

1 + 8κf(γ, 0, 0)Λ0 Ji, (35)

It is important to note that if the coefficient
√

1 + 8κf(γ, 0, 0)Λ0 does not vanish, then

one can simply rescale the Killing charges to get the Einstein charges (17, 21).

4 Conclusions

Using the charge definitions via background Killing charges of [8, 9] we have computed

the mass and angular momenta of the rotating Kerr-AdS black holes for D dimensions for

cosmological Einstein gravity. As a test of stability, we checked that the corresponding

charge definitions for higher order would lead to the same values for asymptotically similar

geometries up to the indicated constant rescaling.

5 Acknowledgments

The work of S.D. is supported by NSF grant PHY 04-01667; that of B.T. by the “Young

Investigator Fellowship” of Turkish Academy of Sciences (TUBA) and by a TUBITAK
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