74 research outputs found

    Evolutionary gaming approach for decision making of Tier-3 Internet service provider networks migration to SoDIP6 networks

    Full text link
    This is the peer reviewed version of the following article: Dawadi, BR, Rawat, DB, Joshi, SR, Manzoni, P. Evolutionary gaming approach for decision making of Tier-3 Internet service provider networks migration to SoDIP6 networks. Int J Commun Syst. 2020; 33:e4399, which has been published in final form at https://doi.org/10.1002/dac.4399. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] With the increasing number of Internet of Things (IoT) devices, current networking world is suffering in terms of management and operations with lack of IPv4 addresses leading to issues like network address translation (NAT) proliferation, security and quality of services. Software-defined networking (SDN) and Internet Protocol version 6 (IPv6) are the new networking paradigms evolved to address related issues of legacy IPv4 networking. To adapt with global competitive environment and avoid all existing issues in legacy networking system, network service providers have to migrate their networks into IPv6 and SDN-enabled networks. But immediate transformations of existing network are not viable due to several factors like higher cost of migration, lack of technical human resources, lack of standards and protocols during transitions, and many more. In this paper, we present the migration analysis for proper decision making of network transition in terms of customer demand, traffic engineering, and organizational strength with operation expenditure for network migration using evolutionary gaming approach. Joint migration to SDN-enabled IPv6 network from game theoretic perspective is modeled and is validated using numerical results obtained from simulations. Our empirical analysis shows the evolutionary process of network migration while different internal and external factors in the organization affect the overall migration. Evolutionary game in migration planning is supportive in decision making for service providers to develop suitable strategy for their network migration. The proposed approach for migration decision making is mostly applicable to fairly sustained service providers who lack economics, regulation/policy, and resources strengths.ERASMUS+, Grant/Award Number: KA107; UGC-NP, Grant/Award Number: FRG-074/75-Engg-01; NTNU-EnPE-MSESSD; US National Science Foundation, Grant/Award Numbers: CNS 1650831, HRD 1828811; NASTDawadi, BR.; Rawat, DB.; Joshi, SR.; Manzoni, P. (2020). Evolutionary gaming approach for decision making of Tier-3 Internet service provider networks migration to SoDIP6 networks. International Journal of Communication Systems. 33(11):1-17. https://doi.org/10.1002/dac.4399S1173311Livadariu, I., Elmokashfi, A., & Dhamdhere, A. (2017). On IPv4 transfer markets: Analyzing reported transfers and inferring transfers in the wild. Computer Communications, 111, 105-119. doi:10.1016/j.comcom.2017.07.012Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Software Defined IPv6 Network: A New Paradigm for Future Networking. Journal of the Institute of Engineering, 15(2), 1-13. doi:10.3126/jie.v15i2.27636Rizvi, S. N., Raumer, D., Wohlfart, F., & Carle, G. (2015). Towards carrier grade SDNs. Computer Networks, 92, 218-226. doi:10.1016/j.comnet.2015.09.029Sezer, S., Scott-Hayward, S., Chouhan, P., Fraser, B., Lake, D., Finnegan, J., … Rao, N. (2013). Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Communications Magazine, 51(7), 36-43. doi:10.1109/mcom.2013.6553676ONF TR‐506.SDN migration considerations and use cases.;2014.https://www.opennetworking.org/wp-content/uploads/2014/10/sb-sdn-migration-use-cases.pdf.Raza, M. H., Sivakumar, S. C., Nafarieh, A., & Robertson, B. (2014). A Comparison of Software Defined Network (SDN) Implementation Strategies. Procedia Computer Science, 32, 1050-1055. doi:10.1016/j.procs.2014.05.532Wu, P., Cui, Y., Wu, J., Liu, J., & Metz, C. (2013). Transition from IPv4 to IPv6: A State-of-the-Art Survey. IEEE Communications Surveys & Tutorials, 15(3), 1407-1424. doi:10.1109/surv.2012.110112.00200Contreras, L. M., Doolan, P., Lønsethagen, H., & López, D. R. (2015). Operational, organizational and business challenges for network operators in the context of SDN and NFV. Computer Networks, 92, 211-217. doi:10.1016/j.comnet.2015.07.016Sandhya, Sinha, Y., & Haribabu, K. (2017). A survey: Hybrid SDN. Journal of Network and Computer Applications, 100, 35-55. doi:10.1016/j.jnca.2017.10.003ON.LAB.Driving SDN adoption in service provider networks.;2014.http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-Service-Provider-SDN-final.pdf.SANDVINE. Carrier grade NAT: Mitigate IPv4 address exhaustion while maintaining network visibility.https://www.sandvine.com/hubfs/Procera_Live_Site_Files/PDF_Live_Site/Solutions_brief/SB_CGNAT.pdf. Published2018. .F5. Carrier‐grade NAT (CGNAT) for service providers.https://www.f5.com/services/resources/use-cases/carrier-grade-nat-for-service-providers. Accessed September 20 2019.Trinh, T. A., Gyarmati, L., & Sallai, G. (2010). Migrating to IPv6: A game-theoretic perspective. IEEE Local Computer Network Conference. doi:10.1109/lcn.2010.5735739Nikkhah, M. (2016). Maintaining the progress of IPv6 adoption. Computer Networks, 102, 50-69. doi:10.1016/j.comnet.2016.02.027Hu, T., Yi, P., Zhang, J., & Lan, J. (2018). A distributed decision mechanism for controller load balancing based on switch migration in SDN. China Communications, 15(10), 129-142. doi:10.1109/cc.2018.8485475TaoP YingC SunZ TanS WangP SunZ.The controller placement of software‐defined networks based on minimum delay and load balancing. In:2018 IEEE 16th Intl Conf on Dependable Autonomic and Secure Computing 16th Intl Conf on Pervasive Intelligence and Computing 4th Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech).;2018:310‐313.Wang, K.-Y., Kao, S.-J., & Kao, M.-T. (2018). An efficient load adjustment for balancing multiple controllers in reliable SDN systems. 2018 IEEE International Conference on Applied System Invention (ICASI). doi:10.1109/icasi.2018.8394323Xu, H., Li, X.-Y., Huang, L., Deng, H., Huang, H., & Wang, H. (2017). Incremental Deployment and Throughput Maximization Routing for a Hybrid SDN. IEEE/ACM Transactions on Networking, 25(3), 1861-1875. doi:10.1109/tnet.2017.2657643Khorramizadeh, M., & Ahmadi, V. (2018). Capacity and load-aware software-defined network controller placement in heterogeneous environments. Computer Communications, 129, 226-247. doi:10.1016/j.comcom.2018.07.037LanW LiF LiuX QiuY.A dynamic load balancing mechanism for distributed controllers in software‐defined networking. In:2018 10th International Conference on Measuring Technology and Mechatronics Automation (ICMTMA).;2018:259‐262.TR‐506 O.SDN Migration considerations and use cases.;2014.Kobayashi, M., Seetharaman, S., Parulkar, G., Appenzeller, G., Little, J., van Reijendam, J., … McKeown, N. (2014). Maturing of OpenFlow and Software-defined Networking through deployments. Computer Networks, 61, 151-175. doi:10.1016/j.bjp.2013.10.011BabikerH NikolovaI ChittimaneniKK.Deploying IPv6 in the Google Enterprise Network. Lessons learned. In:Proceedings of the 25th International Conference on Large Installation System Administration.;2011:10.APNIC. IPv6 capability measurement.https://stats.labs.apnic.net/ipv6. Accessed February 15 2020.Google Incl. IPv6 user access status.https://www.google.com/intl/en/ipv6/statistics.html. Accessed February 16 2020.Abdullah, S. A. (2019). SEUI-64, bits an IPv6 addressing strategy to mitigate reconnaissance attacks. Engineering Science and Technology, an International Journal, 22(2), 667-672. doi:10.1016/j.jestch.2018.11.012KreutzD RamosF VerissimoP RothenbergCE AzodolmolkyS UhligS.Software‐defined networking: A comprehensive survey.arXiv Prepr arXiv14060440.2014.DawadiBR RawatDB JoshiSR KeitschMM.Recommendations for energy efficient SoDIP6 network deployment at the early stage rural ICT expansion of Nepal. In: 2019International Conference on Computing Networking and Communications ICNC 2019.;2019.https://doi.org/10.1109/ICCNC.2019.8685567WintherM.Tier 1 isps: what they are and why they are important. IDC White Pap2006:1‐13.DawadiBR RawatDB JoshiSR.Evolutionary dynamics of service provider legacy network migration to software defined IPv6 network. In:International Conference on Computing and Information Technology;2019:245‐257.BriainDÓ DenieffeD KavanaghY OkelloD.A proposed architecture for distributed Internet eXchange Points in developing countries. In:2018 IST‐Africa Week Conference (IST‐Africa).;2018:Page‐‐1.ChatzisN SmaragdakisG FeldmannA.On the importance of Internet eXchange Points for today's Internet ecosystem.arXiv Prepr arXiv13075264.2013.RyanPS GersonJ.A primer on Internet exchange points for policymakers and non‐engineers.Available SSRN 2128103.2012.BogineniK.Introducing ONOS: A SDN network operating system for service providers.White Pap.2014.Karakus, M., & Durresi, A. (2018). Economic Viability of Software Defined Networking (SDN). Computer Networks, 135, 81-95. doi:10.1016/j.comnet.2018.02.015Shakkottai, S., & Srikant, R. (2006). Economics of Network Pricing With Multiple ISPs. IEEE/ACM Transactions on Networking, 14(6), 1233-1245. doi:10.1109/tnet.2006.886393Weiss, M. B., & Shin, S. (2002). Internet Interconnection Economic Model and its Analysis: Peering and Settlement. Communication Systems, 215-231. doi:10.1007/978-0-387-35600-6_10De Souza, E. P., Ferreira, E. M., & Neves, A. G. M. (2018). Fixation probabilities for the Moran process in evolutionary games with two strategies: graph shapes and large population asymptotics. Journal of Mathematical Biology, 78(4), 1033-1065. doi:10.1007/s00285-018-1300-4Klimek, P., Thurner, S., & Hanel, R. (2010). Evolutionary dynamics from a variational principle. Physical Review E, 82(1). doi:10.1103/physreve.82.01190

    Communication: Conical Intersections Between Vibrationally Adiabatic Surfaces in Methanol

    Get PDF
    A set of seven conical intersections (CI’s) in methanol between vibrationally adiabatic surfaces is reported. The intersecting surfaces represent the energies of the two asymmetric CH stretch vibrations regarded as adiabatic functions of the torsion and COH bend angles. The ab initio data are well described by an extended Zwanziger and Grant (E ⊗ e) model [J. W. Zwanziger and E. R. Grant, J. Chem. Phys. 87, 2954 (1987)] that might also be regarded as an extension of the XHL model [L.-H. Xu, J. T. Hougen, and R. M. Lees, J. Mol. Spectrosc. 293–294, 38 (2013)]. The CI\u27s illuminate the role of geometric phase in methanol. More generally, they suggest the importance of energy transfer processes localized near the CI’s

    Assignment And Analysis Of The No2 In-plane Rock Band Of Nitromethane Recorded By High-resolution Ftir Synchrotron Spectroscopy

    Get PDF
    The high-resolution rotationally resolved Fourier Transform Far-infrared spectrum of the NO2_{2} in plane-rock band (440-510 cm1^{-1}) of nitromethane (CH3_{3}NO2_{2}) has been recorded using the Far-Infrared Beamline at the Canadian Light Source, with a resolution of 0.00096 cm1^{-1}. More than 1500 transitions lines have been assigned for {\itmm'} = 0; {\itKK}a{_a}^{'} {\leq 77}; {\itJJ}^{'} {\leq 5050}; using an automated ground state combination difference program together with the traditional Loomis Wood approach\footnote{C.~F.~Neese., \textit{An Interactive Loomis-Wood Package, V2.0,} {\textbf{56th^{th}}},OSU Interanational Symposium on Molecular Spectroscopy (2001).}. Transitions involving {\itmm'} = 0; {\itKK}a{_a}^{'} {\leq77}; {\itJJ'} {\leq 2020}; in the upper vibrational state are fit using the six-fold torsion-rotation program developed by Ilyushin et.al\footnote{V.~V.~Ilyushin, Z.~Kisiel, L.~Pszczolkowski, H.~Mader, and J.~T.~Hougen, \textit{M.~Mol.~Spectrosc.} \underline{\textbf{259}},~26, (2010).}. The torsion-rotation energy pattern in the lowest torsional state ( {\itmm'} = 0) of the upper vibrational state is similar to that of the vibrational ground state

    An Extended Jahn-Teller Hamiltonian for Large-Amplitude Motion: Application To Vibrational Conical Intersections in CH3SH and CH3OH

    Get PDF
    An extended Jahn-Teller Hamiltonian is presented for the case where the (slow) nuclear motion extends far from the symmetry point and may be described approximately as motion on a sphere. Rather than the traditional power series expansion in the displacement from the C3v symmetry point, an expansion in the spherical harmonics is employed. Application is made to the vibrational Jahn-Teller effect in CH3XH, with X = S, O, where the equilibrium CXH angles are 83° and 72°, respectively. In addition to the symmetry-required conical intersection (CI) at the C3v symmetry point, ab initio calculations reveal sets of six symmetry-allowed vibrational CIs in each molecule. The CIs for each molecule are arranged differently in the large-amplitude space, and that difference is reflected in the infrared spectra. The CIs in CH3SH are found in both eclipsed and staggered geometries, whereas those for CH3OH are found only in the eclipsed geometry near the torsional saddle point. This difference between the two molecules is reflected in the respective high-resolution spectra in the CH stretch fundamental region

    PHOTOPHYSICAL CHARACTERIZATION OF SELF-ASSEMBLED PERYLENE TETRACARBOXYLIC DIIMIDE WITH APPENDED DIAMINE - NAPHTHALENE-1,5 OR 2,6-DIYLBIS(OXY)) BIS (ETHANE-2,1-DIYL)) DIPHOSPHONIC ACID

    Get PDF
    Ultrafast interfacial charge transfer (CT), charge separation (CS), and charge recombination (CR), are among the key factors in determining the overall efficiency of the organic photovoltaic devices. Perylene tetracarboxylic diimide (PDI) and its derivatives exhibit excellent thermal, chemical and optical stability, and highly absorbed in visible region. The combination of these features makes PDIs ideal molecular frameworks for development of a photovoltaic devices. Perylene tetracaroxylic diimides with appended diamine (PDI-EA), and two isomers of phosphonic acid-appended diakoxynapthalene derivatives (DAN) have been synthesized and their photophysical properties and self-assembly studied by using absorption and emission spectroscopic techniques. These complexes were designed for use as mimics of the photosynthetic reaction center. Self-assembly of these molecules in aqueous environment resulted in the formation of charge transfer (CT) complex. In polar solvent, the absorption and emission spectra were blue-shifted as the incremental addition of NAD. Further increasing DAN1 to PDI-EA ratio resulted in significant fluorescence quenching of the emission band, which can be assigned to fast electron transfer from DAN1 to singlet-excited state of PDI-EA

    Legacy Network Integration with SDN-IP Implementation towards a Multi-Domain SoDIP6 Network Environment

    Full text link
    [EN] The logical separation of the data plane and the control plane of the network device conceptually defined by software-defined networking (SDN) creates many opportunities to create smart networking with better efficiency for network management and operation. SDN implementation over telecommunications (Telcos) and Internet service provider (ISP) networks is a challenging issue due to the lack of a high maturity level of SDN-based standards and several other critical factors that are considered during the real-time migration of existing legacy IPv4 networks. Different migration approaches have been studied; however, none of them seem to be close to realizing implementation. This paper implements the SDN-IP and Open Network Operating System (ONOS) SDN controller to migrate legacy IPv4 networks to multi-domain software-defined IPv6 (SoDIP6) networks and experimentally evaluate the viability of joint network migration in the ISP networks. We present results using extensive simulations for the suitable placement of the master ONOS controller during network migration by considering minimum control path latency using optimal path routing and the breadth first router replacement (BFR) technique. Our empirical analysis and evaluations show that the identification of the median router to attach the master controller and router migration planning using BFR give better results for carrier-grade legacy networks' migration to SoDIP6 networks.This research was partially funded by the Norwegian University of Science and Technology, Trondhiem, Norway (NTNU) under Sustainable Engineering Education Project (SEEP) financed by EnPE, University Grant Commission (grant-ID: FRG7475Engg01), Bhaktapur, Nepal, Nepal academy of Science and Technology (NAST), Kathmandu, Nepal, and U.S. National Science Foundation (NSF). The work of Danda B. Rawat was partly supported by the U.S. National Science Foundation (NSF) under grants CNS 1650831 and HRD 1828811. Any opinions, findings, and conclusions or recommendations expressed in this article are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the NSF. We are thankful to the ERASMUS+ KA107 project and the GRC lab team members at Universitat Politècnica De València for the research support and facilitation.Dawadi, BR.; Rawat, DB.; Joshi, SR.; Manzoni, P. (2020). Legacy Network Integration with SDN-IP Implementation towards a Multi-Domain SoDIP6 Network Environment. Electronics. 9(9):1-22. https://doi.org/10.3390/electronics9091454S12299Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Software Defined IPv6 Network: A New Paradigm for Future Networking. Journal of the Institute of Engineering, 15(2), 1-13. doi:10.3126/jie.v15i2.27636Dawadi, B. R., Rawat, D. B., Joshi, S. R., & Manzoni, P. (2020). Evolutionary gaming approach for decision making of Tier‐3 Internet service provider networks migration to SoDIP6 networks. International Journal of Communication Systems, 33(11). doi:10.1002/dac.4399Gu, D., Su, J., Xue, Y., Wang, D., Li, J., Luo, Z., & Yan, B. (2020). Modeling IPv6 adoption from biological evolution. Computer Communications, 158, 166-177. doi:10.1016/j.comcom.2020.02.081IPv6 Capability Measurement https://stats.labs.apnic.net/ipv6Dawadi, B. R., Rawat, D. B., Joshi, S. R., & Keitsch, M. M. (2018). Joint Cost Estimation Approach for Service Provider Legacy Network Migration to Unified Software Defined IPv6 Network. 2018 IEEE 4th International Conference on Collaboration and Internet Computing (CIC). doi:10.1109/cic.2018.00056Csikor, L., Szalay, M., Retvari, G., Pongracz, G., Pezaros, D. P., & Toka, L. (2020). Transition to SDN is HARMLESS: Hybrid Architecture for Migrating Legacy Ethernet Switches to SDN. IEEE/ACM Transactions on Networking, 28(1), 275-288. doi:10.1109/tnet.2019.2958762Sandhya, Sinha, Y., & Haribabu, K. (2017). A survey: Hybrid SDN. Journal of Network and Computer Applications, 100, 35-55. doi:10.1016/j.jnca.2017.10.003Mostafaei, H., Lospoto, G., Di Lallo, R., Rimondini, M., & Di Battista, G. (2020). A framework for multi‐provider virtual private networks in software‐defined federated networks. International Journal of Network Management, 30(6). doi:10.1002/nem.2116Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Evolutionary Dynamics of Service Provider Legacy Network Migration to Software Defined IPv6 Network. Advances in Intelligent Systems and Computing, 245-257. doi:10.1007/978-3-030-19861-9_24Salsano, S., Ventre, P. L., Lombardo, F., Siracusano, G., Gerola, M., Salvadori, E., … Prete, L. (2016). Hybrid IP/SDN Networking: Open Implementation and Experiment Management Tools. IEEE Transactions on Network and Service Management, 13(1), 138-153. doi:10.1109/tnsm.2015.2507622Vissicchio, S., Tilmans, O., Vanbever, L., & Rexford, J. (2015). Central Control Over Distributed Routing. Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. doi:10.1145/2785956.2787497Rizvi, S. N., Raumer, D., Wohlfart, F., & Carle, G. (2015). Towards carrier grade SDNs. Computer Networks, 92, 218-226. doi:10.1016/j.comnet.2015.09.029Risdianto, A. C., Tsai, P.-W., Ling, T. C., Yang, C.-S., & Kim, J. (2017). Enhanced Onos Sdn Controllers Deployment For Federated Multi-Domain Sdn-Cloud With Sd-Routing-Exchange. Malaysian Journal of Computer Science, 30(2), 134-153. doi:10.22452/mjcs.vol30no2.5Ventre, P. L., Salsano, S., Gerola, M., Salvadori, E., Usman, M., Buscaglione, S., … Snow, W. (2017). SDN-Based IP and Layer 2 Services with an Open Networking Operating System in the GÉANT Service Provider Network. IEEE Communications Magazine, 55(4), 71-79. doi:10.1109/mcom.2017.1600194SDN-IP Arhitecture https://wiki.onosproject.org/display/ONOS/SDN-IP+ArchitectureLee, H.-L., Liu, T.-L., & Chen, M. (2019). Deploying SDN-IP over Transnational Network Testbed. 2019 IEEE International Conference on Consumer Electronics - Taiwan (ICCE-TW). doi:10.1109/icce-tw46550.2019.8991776Das, T., Sridharan, V., & Gurusamy, M. (2020). A Survey on Controller Placement in SDN. IEEE Communications Surveys & Tutorials, 22(1), 472-503. doi:10.1109/comst.2019.2935453Chen, W., Chen, C., Jiang, X., & Liu, L. (2018). Multi-Controller Placement Towards SDN Based on Louvain Heuristic Algorithm. IEEE Access, 6, 49486-49497. doi:10.1109/access.2018.2867931Qi, Y., Wang, D., Yao, W., Li, H., & Cao, Y. (2019). Towards Multi-Controller Placement for SDN Based on Density Peaks Clustering. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). doi:10.1109/icc.2019.8761814Lu, J., Zhang, Z., Hu, T., Yi, P., & Lan, J. (2019). A Survey of Controller Placement Problem in Software-Defined Networking. IEEE Access, 7, 24290-24307. doi:10.1109/access.2019.2893283Singh, A. K., Maurya, S., Kumar, N., & Srivastava, S. (2019). Heuristic approaches for the reliable SDN controller placement problem. Transactions on Emerging Telecommunications Technologies, 31(2). doi:10.1002/ett.3761Das, T., & Gurusamy, M. (2018). Resilient Controller Placement in Hybrid SDN/Legacy Networks. 2018 IEEE Global Communications Conference (GLOBECOM). doi:10.1109/glocom.2018.8647566Heller, B., Sherwood, R., & McKeown, N. (2012). The controller placement problem. ACM SIGCOMM Computer Communication Review, 42(4), 473-478. doi:10.1145/2377677.2377767SDN Control Plane Performance: Raising the Bar on SDN Performance, Scalability, and High Availability https://wiki.onosproject.org/download/attachments/13994369/Whitepaper-%20ONOS%20Kingfisher%20release%20performance.pdf?version=

    Novel Patterns of Torsion-Inversion-Rotation Energy Levels in the ν11 Asymmetric CH-Stretch Spectrum of Methylamine

    Get PDF
    The high-resolution infrared spectrum of methylamine (CH3NH2) has been recorded using slit-jet direct absorption spectroscopy in the ν11 CH-stretch region (2965–3005 cm−1) with a resolution of 0.0025 cm−1. The 621 lines assigned by ground state combination differences represent 27 substates with |K′| ≤ 2 for the A, B, E1, and E2 symmetries. The spectrum of CH3NH2 is complicated by torsion and inversion tunneling connecting six equivalent minima. The upper states K′ = 0, ± 1 for E1 and E2 are substantially perturbed by “dark” states. The result in the spectrum is multiplets of 2 or 3 states with mixed bright/dark character. The analysis of the spectrum reveals two qualitative differences in the energy level pattern relative to the vibrational ground state and relative to available data on the lower frequency vibrations (NH2 wag and CN stretch). First at J′ = 0, there is a different ordering of the levels connected by torsion-inversion tunneling. Second, the low-J splittings indicative of torsion-rotation coupling are greatly reduced in the ν11 excited state relative to the vibrational ground state for both the E1 and E2 species, suggesting the partial suppression of torsional tunneling in the ν11 CH-stretch excited state

    Migration cost optimization for service provider legacy network migration to software-defined IPv6 network

    Full text link
    This is the peer reviewed version of the following article: Dawadi, BR, Rawat, DB, Joshi, SR, Manzoni, P, Keitsch, MM. Migration cost optimization for service provider legacy network migration to software-defined IPv6 network. Int J Network Mgmt. 2021; 31:e2145, which has been published in final form at https://doi.org/10.1002/nem.2145. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] This paper studies a problem for seamless migration of legacy networks of Internet service providers to a software-defined networking (SDN)-based architecture along with the transition to the full adoption of the Internet protocol version 6 (IPv6) connectivity. Migration of currently running legacy IPv4 networks into such new approaches requires either upgrades or replacement of existing networking devices and technologies that are actively operating. The joint migration to SDN and IPv6 network is considered to be vital in terms of migration cost optimization, skilled human resource management, and other critical factors. In this work, we first present the approaches of SDN and IPv6 migration in service providers' networks. Then, we present the common concerns of IPv6 and SDN migration with joint transition strategies so that the cost associated with joint migration is minimized to lower than that of the individual migration. For the incremental adoption of software-defined IPv6 (SoDIP6) network with optimum migration cost, a greedy algorithm is proposed based on optimal path and the customer priority. Simulation and empirical analysis show that a unified transition planning to SoDIP6 network results in lower migration cost.U.S. National Science Foundation (NSF), Grant/Award Number: CNS 1650831 and HRD 1828811; ERASMUS+ KA107; Nepal Academy of Science and Technology (NAST); Norwegian University of Science and Technology; University Grant Commission (UGC), Nepal, Grant/Award Number: FRG/74_75/Engg-1Dawadi, BR.; Rawat, DB.; Joshi, SR.; Manzoni, P.; Keitsch, MM. (2021). Migration cost optimization for service provider legacy network migration to software-defined IPv6 network. International Journal of Network Management. 31(4):1-24. https://doi.org/10.1002/nem.2145S124314APNIC.IPv6 capability measurement.https://stats.labs.apnic.net/ipv6. Accessed April 22 2020.Google Incl. IPv6 user access status.https://www.google.com/intl/en/ipv6/statistics.html. Accessed February 16 2020.Rawat, D. B., & Reddy, S. R. (2017). Software Defined Networking Architecture, Security and Energy Efficiency: A Survey. IEEE Communications Surveys & Tutorials, 19(1), 325-346. doi:10.1109/comst.2016.2618874Dai, B., Xu, G., Huang, B., Qin, P., & Xu, Y. (2017). Enabling network innovation in data center networks with software defined networking: A survey. Journal of Network and Computer Applications, 94, 33-49. doi:10.1016/j.jnca.2017.07.004Kobayashi, M., Seetharaman, S., Parulkar, G., Appenzeller, G., Little, J., van Reijendam, J., … McKeown, N. (2014). Maturing of OpenFlow and Software-defined Networking through deployments. Computer Networks, 61, 151-175. doi:10.1016/j.bjp.2013.10.011Gumaste, A., Sharma, V., Kakadia, D., Yates, J., Clauberg, A., & Voltolini, M. (2017). SDN Use Cases for Service Provider Networks: Part 2. IEEE Communications Magazine, 55(4), 62-63. doi:10.1109/mcom.2017.7901478Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Software Defined IPv6 Network: A New Paradigm for Future Networking. Journal of the Institute of Engineering, 15(2), 1-13. doi:10.3126/jie.v15i2.27636Shah, J. L., Bhat, H. F., & Khan, A. I. (2019). Towards IPv6 Migration and Challenges. International Journal of Technology Diffusion, 10(2), 83-96. doi:10.4018/ijtd.2019040105Rojas, E., Doriguzzi-Corin, R., Tamurejo, S., Beato, A., Schwabe, A., Phemius, K., & Guerrero, C. (2018). Are We Ready to Drive Software-Defined Networks? A Comprehensive Survey on Management Tools and Techniques. ACM Computing Surveys, 51(2), 1-35. doi:10.1145/3165290Contreras, L. M., Doolan, P., Lønsethagen, H., & López, D. R. (2015). Operational, organizational and business challenges for network operators in the context of SDN and NFV. Computer Networks, 92, 211-217. doi:10.1016/j.comnet.2015.07.016Amin, R., Reisslein, M., & Shah, N. (2018). Hybrid SDN Networks: A Survey of Existing Approaches. IEEE Communications Surveys & Tutorials, 20(4), 3259-3306. doi:10.1109/comst.2018.2837161Audi Marc Amjad A.The Advancement in Information and Communication Technologies (ICT) and Economic Development: A Panel Analysis. MPRA.https://mpra.ub.uni-muenchen.de/93476/. Published 2019. Accessed November 29 2019.Main, A., Zakaria, N. A., & Yusof, R. (2015). Organisation Readiness Factors Towards IPv6 Migration: Expert Review. Procedia - Social and Behavioral Sciences, 195, 1882-1889. doi:10.1016/j.sbspro.2015.06.427Dawadi, B. R., Rawat, D. B., Joshi, S. R., & Baral, D. S. (2019). Affordable Broadband with Software Defined IPv6 Network for Developing Rural Communities. Applied System Innovation, 3(1), 4. doi:10.3390/asi3010004Nikkhah, M. (2016). Maintaining the progress of IPv6 adoption. Computer Networks, 102, 50-69. doi:10.1016/j.comnet.2016.02.027Dell, P. (2018). On the dual-stacking transition to IPv6: A forlorn hope? Telecommunications Policy, 42(7), 575-581. doi:10.1016/j.telpol.2018.04.005GilliganRE NordmarkE GilliganRE et alBasic Transition Mechanisms for IPv6 Hosts and Routers.2000.Cui, Y., Dong, J., Wu, P., Wu, J., Metz, C., Lee, Y. L., & Durand, A. (2013). Tunnel-Based IPv6 Transition. IEEE Internet Computing, 17(2), 62-68. doi:10.1109/mic.2012.63BlanchetM ParentF.IPv6 Tunnel Broker with the Tunnel Setup Protocol (TSP).2010.HuitemaC.Teredo: Tunneling IPv6 over UDP through Network Address Translations (NATs) RFC 4380.2006.CarpenterB MooreK.Connection of IPv6 domains via IPv4 clouds.2001.JungC CarpenterBE.Transmission of IPv6 over IPv4 Domains without Explicit Tunnels.1999.CuiY WuJ LeeY WuP VautrinO.Public IPv4‐over‐IPv6 access Network2013.CuiY SunQ LeeYL TsouT FarrerI BoucadairM.Lightweight 4over6: an extension to the dual‐stack lite Architecture2015.TemplinF GleesonT TalwarM ThalerD.Intra‐Site Automatic Tunnel Addressing Protocol (ISATAP) RFC 5214.2008.DurandA DromsR WoodyattJ LeeY.RFC 6333: Dual‐Stack Lite Broadband Deployments Following IPv4 Exhaustion. IETF Aug.2011.BaoC DecW LiX TroanO MatsushimaS MurakamiT.Mapping of Address and Port with Encapsulation (MAP‐E). IETF Internet Draft.2015.TownsleyW TroanO.IPv6 Rapid Deployment on IPv4 Infrastructures (6rd)‐‐Protocol Specification.2010.ChenM ChenG JiangS LeeY DespresR PennoR.IPv4 Residual Deployment via IPv6‐A Stateless Solution (4rd).2015.WuP CuiY XuM et alPET: Prefixing encapsulation and translation for IPv4‐IPv6 coexistence. In: 2010IEEE Global Telecommunications Conference GLOBECOM2010. 2010:1–5.LiX BaoC ChenM ZhangH WuJ.IVI translation design and deployment for the IPv4/IPv6 coexistence and transition.IETF RFC6219 Internet Eng Task Force Fremont CA.2011.Bagnulo, M., Garcia-Martinez, A., & Van Beijnum, I. (2012). The NAT64/DNS64 tool suite for IPv6 transition. IEEE Communications Magazine, 50(7), 177-183. doi:10.1109/mcom.2012.6231295BagnuloM SullivanA MatthewsP VanBeijnumI.DNS64: DNS extensions for network address translation from IPv6 clients to IPv4 servers RFC 6147.2011.LiuD DengH.NAT46 Considerations.2010.MawatariM KawashimaM ByrneC.464XLAT: Combination of stateful and stateless translation. IETF Internet‐Draft.2013.PerreaultS YamagataI MiyakawaS NakagawaA.Common Requirements for Carrier‐Grade NATs (CGNs) RFC6888.2013.YamaguchiJ ShirasakiY NakagawaA AshidaH.Nat444 addressing models. Req Comments Draft Internet Eng Task Force.2012.ChenG CaoZ XieC BinetD.NAT64 Deployment Options and Experience RFC 7269.2014.LiX BaoC DecW TroanO MatsushimaS MurakamiT.Mapping of Address and Port using Translation (MAP‐T) RFC 7599. IETF Internet Draft.2013.Wu, P., Cui, Y., Wu, J., Liu, J., & Metz, C. (2013). Transition from IPv4 to IPv6: A State-of-the-Art Survey. IEEE Communications Surveys & Tutorials, 15(3), 1407-1424. doi:10.1109/surv.2012.110112.00200Hernandez-Valencia, E., Izzo, S., & Polonsky, B. (2015). How will NFV/SDN transform service provider opex? IEEE Network, 29(3), 60-67. doi:10.1109/mnet.2015.7113227BogineniK et alThe Open Networking Lab (ON.Lab). Introducing ONOS—a SDN network operating system for Service Providers.White Pap.2014;1:14.http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdfTR‐506 O ONF TR‐506.SDN Migration Considerations and Use Cases.2014.https://www.opennetworking.org/wp-content/uploads/2014/10/sb-sdn-migration-use-cases.pdfRisdiantoAC LingTC TsaiP YangC KimJ.Leveraging open‐source software for federated multisite SDN‐cloud playground. In: 2016 IEEE NetSoft Conference and Workshops (NetSoft). ;2016:423‐427.https://doi.org/10.1109/NETSOFT.2016.7502479GalizaH SchwarzM BezerraJ IbarraJ.Moving an ip network to sdn: a global use case deployment experience at amlight. In:Anais Do WPEIF2016Workshop de Pesquisa Experimental Da Internet Do Futuro: 15.LevinD CaniniM SchmidS SchaffertF Feldmann A.Panopticon: Reaping the Benefits of Incremental {SDN} Deployment in Enterprise Networks. In: 2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14). ;2014:333–345.Vissicchio, S., Tilmans, O., Vanbever, L., & Rexford, J. (2015). Central Control Over Distributed Routing. ACM SIGCOMM Computer Communication Review, 45(4), 43-56. doi:10.1145/2829988.2787497Huang, X., Cheng, S., Cao, K., Cong, P., Wei, T., & Hu, S. (2019). A Survey of Deployment Solutions and Optimization Strategies for Hybrid SDN Networks. IEEE Communications Surveys & Tutorials, 21(2), 1483-1507. doi:10.1109/comst.2018.2871061Csikor, L., Szalay, M., Retvari, G., Pongracz, G., Pezaros, D. P., & Toka, L. (2020). Transition to SDN is HARMLESS: Hybrid Architecture for Migrating Legacy Ethernet Switches to SDN. IEEE/ACM Transactions on Networking, 28(1), 275-288. doi:10.1109/tnet.2019.2958762Dawadi, B. R., Rawat, D. B., Joshi, S. R., & Manzoni, P. (2020). Legacy Network Integration with SDN-IP Implementation towards a Multi-Domain SoDIP6 Network Environment. Electronics, 9(9), 1454. doi:10.3390/electronics9091454HongDK MaY BanerjeeS MaoZM.Incremental deployment of SDN in hybrid enterprise and ISP networks. In: Proceedings of the Symposium on SDN Research. 2016:1‐7.Karakus, M., & Durresi, A. (2018). Economic Viability of Software Defined Networking (SDN). Computer Networks, 135, 81-95. doi:10.1016/j.comnet.2018.02.015Rizvi, S. N., Raumer, D., Wohlfart, F., & Carle, G. (2015). Towards carrier grade SDNs. Computer Networks, 92, 218-226. doi:10.1016/j.comnet.2015.09.029Sezer, S., Scott-Hayward, S., Chouhan, P., Fraser, B., Lake, D., Finnegan, J., … Rao, N. (2013). Are we ready for SDN? Implementation challenges for software-defined networks. IEEE Communications Magazine, 51(7), 36-43. doi:10.1109/mcom.2013.6553676Raza, M. H., Sivakumar, S. C., Nafarieh, A., & Robertson, B. (2014). A Comparison of Software Defined Network (SDN) Implementation Strategies. Procedia Computer Science, 32, 1050-1055. doi:10.1016/j.procs.2014.05.532Goransson, P., & Black, C. (2014). SDN in the Data Center. Software Defined Networks, 145-167. doi:10.1016/b978-0-12-416675-2.00007-3AT & T.Introducing the “User Defined Network Cloud”.https://about.att.com/newsroom/introducing_the_user_defined_network_cloud.html. Published 2014. Accessed August 12 2018.CsikorL TokaL SzalayM PongráczG PezarosDP RétváriG.HARMLESS: Cost‐effective transitioning to SDN for small enterprises. In: 2018 IFIP Networking Conference (IFIP Networking) and Workshops. ; 2018:1–9.ON.LAB.Driving SDN Adoption in Service Provider Networks.2014.http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-Service-Provider-SDN-final.pdfBabikerH NikolovaI ChittimaneniKKK.Deploying IPv6 in the Google Enterprise Network. Lessons learned. In:LISA'11 Proceedings of the 25th International Conference on Large Installation System Administration 2011:10.ParkHW HwangISLS LeeJR.Study on the sustainable migration to software defined network for nation‐wide R&E network.Proc—201610th Int Conf Innov Mob Internet Serv Ubiquitous Comput IMIS2016.2016:392‐396.https://doi.org/10.1109/IMIS.2016.117CariaM JukanA HoffmannM.A performance study of network migration to SDN‐enabled traffic engineering. In:2013 IEEE Global Communications Conference (GLOBECOM); 2013:1391‐1396.Sandhya, Sinha, Y., & Haribabu, K. (2017). A survey: Hybrid SDN. Journal of Network and Computer Applications, 100, 35-55. doi:10.1016/j.jnca.2017.10.003LENCSE, G., & KADOBAYASHI, Y. (2019). Comprehensive Survey of IPv6 Transition Technologies: A Subjective Classification for Security Analysis. IEICE Transactions on Communications, E102.B(10), 2021-2035. doi:10.1587/transcom.2018ebr0002NIST.Technical and Economic Assessment of Internet Protocol Verson 6 9IPv6.2006.https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=912231NIST.IPv6 Economic Impact Assessment. NY;2005.https://www.nist.gov/system/files/documents/director/planning/report05-2.pdfDasT CariaM JukanA HoffmannM.A Techno‐economic Analysis of Network Migration to Software‐Defined Networking.2013.http://arxiv.org/abs/1310.0216Das, T., Drogon, M., Jukan, A., & Hoffmann, M. (2014). Study of Network Migration to New Technologies Using Agent-Based Modeling Techniques. Journal of Network and Systems Management, 23(4), 920-949. doi:10.1007/s10922-014-9327-3Yuan, T., Huang, X., Ma, M., & Zhang, P. (2017). Migration to software-defined networks: The customers’ view. China Communications, 14(10), 1-11. doi:10.1109/cc.2017.8107628TürkS LiuY RadekeR LehnertR.Network migration optimization using genetic algorithms. In: Meeting of the European Network of Universities and Companies in Information and Communication Engineering. 2012:112–123.Türk, S. (2014). Network migration optimization using meta-heuristics. AEU - International Journal of Electronics and Communications, 68(7), 584-586. doi:10.1016/j.aeue.2014.04.005TürkS RadekeR LehnertR.Network migration using ant colony optimization. In:2010 9th Conference of Telecommunication Media and Internet; 2010:1–6.TurkS LiuH RadekeR LehnertR.Improving network migration optimization utilizing memetic algorithms. In: Global Information Infrastructure Symposium—GIIS 2013. 2013:1‐8.https://doi.org/10.1109/GIIS.2013.6684345ShayaniD Mas MachucaC JagerM GladischA.Cost analysis of the service migration problem between communication platforms. In: NOMS 2008–2008 IEEE Network Operations and Management Symposium. 2008:734‐737.https://doi.org/10.1109/NOMS.2008.4575201Shayani, D., Mas Machuca, C., & Jager, M. (2010). A techno-economic approach to telecommunications: the case of service migration. IEEE Transactions on Network and Service Management, 7(2), 96-106. doi:10.1109/tnsm.2010.06.i8p0297Naudts, B., Kind, M., Verbrugge, S., Colle, D., & Pickavet, M. (2015). How can a mobile service provider reduce costs with software-defined networking? International Journal of Network Management, 26(1), 56-72. doi:10.1002/nem.1919Dawadi, B. R., Rawat, D. B., & Joshi, S. R. (2019). Evolutionary Dynamics of Service Provider Legacy Network Migration to Software Defined IPv6 Network. Advances in Intelligent Systems and Computing, 245-257. doi:10.1007/978-3-030-19861-9_24BezrukVM ChebotarovaD V KaliuzhniyNM QiangG YuZ.Optimization and mathematical modeling of communication networks.Monogr—Open Electron Arch Kharkov Natl Univ Radio Electron.2019.http://openarchive.nure.ua/handle/document/10121Omantek. Open‐AudIT: Device Information Management System.https://www.open-audit.org/about.phpNet. Inventory Advisor.Network Inventory Software.https://www.network-inventory-advisor.com/. Accessed December 3 2019.OCS‐Inventory. OCSING: Open Inventory Next Generation.https://ocsinventory-ng.org/?lang=en. Accessed December 3 2019.Group MW. Migration Use Cases and Methods Migration Working Group Open Networking Foundation Use Cases and Migration Methods 2.www.opennetworking.orgSohn, S. Y., & Kim, Y. (2011). Economic Evaluation Model for International Standardization of Correlated Technologies. IEEE Transactions on Engineering Management, 58(2), 189-198. doi:10.1109/tem.2010.2058853ONF TS‐006.OpenFlow 1.3 Switch Specification.2012.https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdfMahlooM MontiP ChenJ WosinskaL.Cost modeling of backhaul for mobile networks. In: 2014 IEEE International Conference on Communications Workshops (ICC). 2014:397–402.https://doi.org/10.1109/ICCW.2014.6881230DawadiBR RawatDB JoshiSR KeitschMM.Joint cost estimation approach for service provider legacy network migration to unified software defined IPv6 network. In: Proceedings—4th IEEE International Conference on Collaboration and Internet Computing CIC 2018.2018.https://doi.org/10.1109/CIC.2018.00056FengT BiJ.OpenRouteFlow: Enable legacy router as a software‐defined routing service for hybrid SDN. In: 2015 24th International Conference on Computer Communication and Networks (ICCCN).2015:1–8.MachucaCM EberspaecherJ JägerM GladischA.Service migration cost modeling. In: 2007 ITG Symposium on Photonic Networks. ; 2007:1–5.Poularakis, K., Iosifidis, G., Smaragdakis, G., & Tassiulas, L. (2019). Optimizing Gradual SDN Upgrades in ISP Networks. IEEE/ACM Transactions on Networking, 27(1), 288-301. doi:10.1109/tnet.2018.2890248Galán-Jiménez, J. (2017). Legacy IP-upgraded SDN nodes tradeoff in energy-efficient hybrid IP/SDN networks. Computer Communications, 114, 106-123. doi:10.1016/j.comcom.2017.10.010Vizarreta, P., Trivedi, K., Helvik, B., Heegaard, P., Blenk, A., Kellerer, W., & Mas Machuca, C. (2018). Assessing the Maturity of SDN Controllers With Software Reliability Growth Models. IEEE Transactions on Network and Service Management, 15(3), 1090-1104. doi:10.1109/tnsm.2018.2848105Salsano, S., Ventre, P. L., Lombardo, F., Siracusano, G., Gerola, M., Salvadori, E., … Prete, L. (2016). Hybrid IP/SDN Networking: Open Implementation and Experiment Management Tools. IEEE Transactions on Network and Service Management, 13(1), 138-153. doi:10.1109/tnsm.2015.2507622DasT GurusamyM.Resilient Controller Placement in Hybrid SDN/Legacy Networks. In: 2018 IEEE Global Communications Conference (GLOBECOM). 2018:1–7.DasT GurusamyM.INCEPT: INcremental ControllEr PlacemenT in software defined networks. In: 2018 27th International Conference on Computer Communication and Networks (ICCCN). 2018:1–6

    Complete Phenotypic Recovery of an Alzheimer's Disease Model by a Quinone-Tryptophan Hybrid Aggregation Inhibitor

    Get PDF
    The rational design of amyloid oligomer inhibitors is yet an unmet drug development need. Previous studies have identified the role of tryptophan in amyloid recognition, association and inhibition. Furthermore, tryptophan was ranked as the residue with highest amyloidogenic propensity. Other studies have demonstrated that quinones, specifically anthraquinones, can serve as aggregation inhibitors probably due to the dipole interaction of the quinonic ring with aromatic recognition sites within the amyloidogenic proteins. Here, using in vitro, in vivo and in silico tools we describe the synthesis and functional characterization of a rationally designed inhibitor of the Alzheimer's disease-associated β-amyloid. This compound, 1,4-naphthoquinon-2-yl-L-tryptophan (NQTrp), combines the recognition capacities of both quinone and tryptophan moieties and completely inhibited Aβ oligomerization and fibrillization, as well as the cytotoxic effect of Aβ oligomers towards cultured neuronal cell line. Furthermore, when fed to transgenic Alzheimer's disease Drosophila model it prolonged their life span and completely abolished their defective locomotion. Analysis of the brains of these flies showed a significant reduction in oligomeric species of Aβ while immuno-staining of the 3rd instar larval brains showed a significant reduction in Aβ accumulation. Computational studies, as well as NMR and CD spectroscopy provide mechanistic insight into the activity of the compound which is most likely mediated by clamping of the aromatic recognition interface in the central segment of Aβ. Our results demonstrate that interfering with the aromatic core of amyloidogenic peptides is a promising approach for inhibiting various pathogenic species associated with amyloidogenic diseases. The compound NQTrp can serve as a lead for developing a new class of disease modifying drugs for Alzheimer's disease
    corecore