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An extended E ⊗ e Jahn-Teller Hamiltonian for large-amplitude motion:
Application to vibrational conical intersections in CH3SH and CH3OH

Mahesh B. Dawadi, Bishnu P. Thapaliya,a) and David S. Perryb)

Department of Chemistry, The University of Akron, Akron, Ohio 44325-3601, USA

(Received 19 May 2017; accepted 6 July 2017; published online 26 July 2017)

An extended E ⊗ e Jahn-Teller Hamiltonian is presented for the case where the (slow) nuclear motion
extends far from the symmetry point and may be described approximately as motion on a sphere.
Rather than the traditional power series expansion in the displacement from the C3v symmetry point, an
expansion in the spherical harmonics is employed. Application is made to the vibrational Jahn-Teller
effect in CH3XH, with X = S, O, where the equilibrium CXH angles are 83° and 72°, respectively.
In addition to the symmetry-required conical intersection (CI) at the C3v symmetry point, ab initio
calculations reveal sets of six symmetry-allowed vibrational CIs in each molecule. The CIs for each
molecule are arranged differently in the large-amplitude space, and that difference is reflected in the
infrared spectra. The CIs in CH3SH are found in both eclipsed and staggered geometries, whereas those
for CH3OH are found only in the eclipsed geometry near the torsional saddle point. This difference
between the two molecules is reflected in the respective high-resolution spectra in the CH stretch
fundamental region. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4994699]

I. INTRODUCTION

The Jahn-Teller effect (JTE) was first formulated in the
context of the spontaneous symmetry breaking of orbitally
degenerate electronic states. The Jahn-Teller theorem states
that “A configuration of a polyatomic molecule for an elec-
tronic state having orbital degeneracy cannot be stable with
respect to all displacements of the nuclei unless in the orig-
inal configuration the nuclei all lie on a straight line.”1,2

In this context, the theoretical development was focused on
relatively small displacements from a high-symmetry molec-
ular configuration in which there were degenerate electronic
states. Since then, it has been appreciated that the JTE has
widespread applicability in both molecular spectroscopy and
condensed-phase physics. In varied situations, “the JTE serves
as an approved general model, which allows one to rationalize
the results on molecular structure and properties obtained by
other methods.”3 That is, the Jahn-Teller (JT) concept provides
a general mathematical framework for treating a wide range
of phenomena involving coupled adiabatic states.

In E ⊗ e systems, the relevant pair of states is degenerate
(E) at the high-symmetry reference geometry (C3v or D3h). As
the system is displaced from that high-symmetry geometry, the
degenerate pair splits, which results in a symmetry-required
conical intersection (CI) centered on the C3v or D3h refer-
ence geometry. In this work, we denote the displacement from
the symmetrical geometry as ρ and the azimuthal (torsional)
angle around the symmetry point as γ. We refer to JT cou-
pling terms in exp(inγ) as nth-order JT coupling. Zwanziger
and Grant4 demonstrated that additional conical intersections
between the JT-coupled adiabatic surfaces occur at large ρ

a)Present address: Department of Chemistry, University of Tennessee,
Knoxville, TN 37996, USA.

b)Author to whom correspondence should be addressed: dperry@uakron.edu

when both the 1st- and 2nd-order JT couplings are active.
Viel and Eisfeld5,6 developed extended JT- and pseudo-JT-
Hamiltonians that included polynomial coupling terms up to
6th order. Opalka and Domcke7 have invoked invariant the-
ory as a general means of deriving the symmetry-adapted
polynomials needed for high-order JT Hamiltonians.

The vibrational JTE8 extends the JT concept into the
purely vibrational domain where certain vibrations with high
frequencies are regarded as adiabatic functions of other
low-frequency, large-amplitude coordinates. In the electronic
domain, the potential energy surfaces (PESs) represent the adi-
abatic separation of electronic and nuclear motions under the
Born-Oppenheimer approximation. In the vibrational domain,
it is also possible to make a Born-Oppenheimer-like approx-
imation separating fast and slow vibrational motions.9–11 In
this case, the motion of the high-frequency vibrations (e.g.,
OH, CH, CO, and SF stretches) can be adiabatically solved
at each molecular geometry along the low-frequency coordi-
nates such as torsion. The JT formalism is applicable when
the resulting vibrationally adiabatic surfaces are degenerate
at a symmetrical nuclear configuration in the large-amplitude
vibrational coordinate space. Of course, the total adiabatic
energy at each point in the large-amplitude space is the sum
of the vibrationally adiabatic energy plus the energy of that
nuclear configuration on the electronic PES.

In some cases of the vibrational JTE,12 the electronic
potential energy surface has a minimum-energy geometry that
is far from ρ = 0. For example, in methanol, the minimum
electronic energy occurs at a COH angle that is bent 72°
from linear. In this case of the vibrational JTE, we take the
two asymmetric CH stretch frequencies as adiabatic func-
tions of the COH bend angle ρ and the torsional angle γ.
When the COH angle is linear (ρ = 0°), the molecular geom-
etry has C3v symmetry and the two asymmetric CH stretches
are degenerate. Although this symmetric geometry is rather
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high in energy (about 11 000 cm�1 above the minimum), it
does serve as the reference point for the JT Hamiltonian.
There are, however, additional molecular configurations dis-
tant from the symmetric geometry where the two asymmetric
CH stretches become degenerate. These additional degenera-
cies are vibrational conical intersections that occur at much
lower energies and are easily accessible to the low-energy
dynamics.12,13

In our previous work,12 the ab initio vibrationally adia-
batic surfaces for methanol were fit to a JT Hamiltonian with JT
coupling up to 4th order (cos 4γ coupling terms) and polyno-
mial expansions in ρwith terms up to ρ16. Although a precise
fit to both the electronic and vibrational energies in methanol
was obtained, some shortcomings of this form of the Hamil-
tonian were evident. First, the convergence properties of the
long polynomial series in ρwere poor with substantial alternat-
ing positive and negative terms. Second, the polar coordinates
(ρ,γ) were derived from the planar expansion in Cartesian
coordinates, x = ρcos γ and y = ρsin γ.6 However, for a large
range of ρ extending to 100°, such a planar representation
neglects the curvilinear nature of the large-amplitude motion.
At each (ρ, γ) combination, one finds that the optimized OH
distance is roughly constant, so a better zeroth-order descrip-
tion of the large-amplitude space is the motion of H on a sphere
centered at the O atom.

In this paper, we present a new formulation of the E ⊗ e
Jahn-Teller Hamiltonian employing expansions of the diago-
nal potential and of the coupling terms in the spherical harmon-
ics. This treatment facilitates application of the Jahn-Teller
concept to systems where the relevant nuclear motions extend
far from the relevant symmetry point. Application will be made
to CH3SH and CH3OH where the domain of motion for the
chalcogenic hydrogen is more than 2π steradians.

Starting with the first theoretical prediction by von Neu-
mann and Wigner14 in 1929, conical intersections (CIs) have
been the subject of an enormous interest because of the
key mechanistic role of CIs in photochemical and photo-
physical processes.2,15,16 In electronic spectroscopy, CIs are
true degeneracies of electronic PESs and are responsible
for ultrafast electronic relaxation.17–19 In the context of the
vibrationally adiabatic approximation, vibrational CIs have
been reported12,13,20–23 and identified as a cause of ultrafast
vibrational relaxation.20–22

In methanol,12,13 there are seven related vibrational CIs
between the vibrationally adiabatic surfaces that represent the
energies of the first excited asymmetric CH stretch vibra-
tions. One is at the symmetrical C3v geometry where these
two vibrations form a degenerate E-symmetry pair. The oth-
ers are in the eclipsed configurations (γ = 0°, 120°, and 240°)
near the top of the torsional barrier at ρ = 62° and 92°. An
obvious consequence of these vibrational CIs is the predic-
tion of ultrafast energy transfer between the adiabatic sur-
faces and the expectation that the surface-hopping might be
localized near the CIs.12,13,17,20–22 The CIs provide a connec-
tion between the upper and lower surfaces where the system
can transition smoothly from one surface to the other with-
out any momentum gap in the low-frequency (ρ, γ) space.
Hamm and Stock introduced the concept of vibrational CIs
to demonstrate the ultrafast vibrational relaxation in different

molecular systems and reported the time-dependent wave-
function propagation rate of ∼100 fs for intra-molecularly
H-bonded malonaldehyde and ∼60 fs for the formate-water
complex.20,21

In this paper, we add methyl mercaptan (CH3SH), the
thiol analog of methanol, as an additional example of a sys-
tem with multiple vibrational CIs; however, the pattern of
those CIs in the large-amplitude space is rather different from
methanol.

II. A JAHN-TELLER HAMILTONIAN
FOR LARGE-AMPLITUDE MOTION

The premise of the Jahn-Teller effect is a partition of the
degrees of freedom in a molecular system into fast (f ) and slow
(s) degrees of freedom. The fast degrees of freedom could
correspond to electronic motion or—as in the examples we
present here—to high-frequency vibrations. We are interested
in situations where the slow coordinates Q̄ = (ρ, γ) represent
large-amplitude motion that may be described approximately
as motion on the surface of a sphere. Examples include the
torsional and bending motions of the chalcogenic proton in
CH3XH with X = O, S. In these cases, the large-amplitude
coordinates are the CXH bend (ρ) and the symmetrized24

torsional angle (γ).
The Hamiltonian can be written as the sum of two parts,

H = Hf + Ts. (1)

In this paper, the slow coordinates are taken to be the usual
spherical polar angles, Q̄ ≡ (ρ, γ). The kinetic energy oper-
ator for these slow degrees of freedom is then T s = L2/2µr2,
where L2 is the usual orbital angular momentum operator, µ
is the reduced mass, and r is the radius of the sphere. The
Hamiltonian H f for the fast degrees of freedom includes all
contributions to the potential energy plus the kinetic energy
operator for the fast degrees of freedom.

The eigenfunctions ψf of H f are determined by

Hfψf = Ef

(
Q̄
)
ψf , (2)

where both Hf = Hf

(
q̄; Q̄

)
and ψf = ψf

(
q̄; Q̄

)
are explicit

functions of the fast coordinates, q̄, and parametric functions
of the slow coordinates, Q̄. Equation (2) is solved at each
combination of the slow coordinates and the resulting fast
eigenvalues Ef

(
Q̄
)

are also the functions of ρ and γ.
In the E ⊗ e Jahn-Teller problem, we focus on a pair of

fast states (E) that are degenerate at the C3v (or D3h) reference
geometry and consider their dependence on the pair of slow
coordinates (e). Here, for the fast degrees of freedom, the crude
adiabatic basis4 will be used, and the basis set will be restricted
to the two E-type functions, φf,x and φf,y, in the Cartesian (real)
representation. This Cartesian basis is related to the commonly
used complex representation by a unitary transformation.6 The
Hamiltonian matrix becomes

Hf =

[
Hf ,xx Hf ,xy

Hf ,yx Hf ,yy

]
, (3)

where

Hf ,ij

(
Q̄
)
=

〈
φf ,i |Hf |φf ,j

〉
q̄
, with i = x, y and j = x, y. (4)
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Here, the integration over the fast coordinates is indicated as
a subscript q̄, and the dependence of the result on the slow
coordinates Q̄ is indicated explicitly.

The overall Schrödinger equation

Hψ = Eψ (5)

can then be solved in a product basis,

Φki ≡ φs,kφf ,i. (6)

The Hamiltonian matrix elements in this product basis are then〈
Φki

��H ��Φlj

〉
Q̄,q̄
=

〈
φs,k

��Hf ,ij
��φs,l

〉
Q̄

+
〈
φs,k

��Ts,ij ��φs,l

〉
Q̄

. (7)

Here, the slow basis functions φs form a complete set in the
slow coordinate space, and the indices k and l label the mem-
bers of that complete set. The indices i and j label the fast
basis functions φf as above. The subscripts Q̄ and q̄ indicate
integrations over the slow and fast coordinates, respectively.

For nonzero contributions to Eq. (7), the integrands must
be totally symmetric; that is, in terms of the symmetry species
in C3v, we require

a1 @ Γ
(
φs,k

)
⊗ Γ

(
Hf ,ij

)
⊗ Γ

(
φs,l

)
. (8)

Since Γ
(
φs,k

)
= Γ

(
φs,l

)
= e, we must have Γ

(
Hf ,ij

)
= a1 ⊕ e.

We represent the terms of these two symmetries as

Hf = Ha1
f + He

f =



Ha1
f ,xx Ha1

f ,xy

Ha1
f ,yx Ha1

f ,yy


+



He
f ,xx He

f ,xy
He

f ,yx He
f ,yy


. (9)

In this work, we use e-type basis functions that transform as the
Cartesian x- and y-components of the degenerate representa-
tion. To assure consistency in the handling of the e-symmetry
terms in the Hamiltonian [Eq. (9)], it is useful to consider the Cs

subgroup of C3v that has the x-z plane as its plane of symmetry
and in which the x- and y-components of the e species trans-
form, respectively, as a′ and a′′. The requirement of totally
symmetric (a′) integrands then gives the following species in
Cs for the matrix elements in Eq. (9):

a′ : Ha1
f ,xx, Ha1

f ,yy, He
f ,xx, He

f ,yy,

a′′ : He
f ,xy, He

f ,yx, (10)

and Ha1
f ,xy = Ha1

f ,yx = 0.

The requirement that the eigenvalues of H f be invariant to
any unitary transformation gives Ha1

f ,xx = Ha1
f ,yy ≡ Ha1

f , He
f ,xx

= −He
f ,yy, and He

f ,xy = He
f ,yx. This yields H f in the same form

which is given in Eq. (9) of Ref. 6,

Hf =



Ha1
f 0
0 Ha1

f


+



He
f ,xx He

f ,xy
He

f ,xy −He
f ,xx


. (11)

Each of these matrix elements is a function of the slow
coordinates Q̄ = (ρ, γ) and we expand them in the spherical
harmonics,

HΓf,ij (ρ, γ) =
∑

l,m
cΓlmYlm (ρ, γ). (12)

Here, Y lm are the real combinations of the complex spher-
ical harmonics, where the functions containing cos(mγ) are
denoted with the index m > 0 and those containing sin(|m|γ)

are denoted with m < 0. The former transform as a′ in Cs and
the latter as a′′. The symmetries of the spherical harmonics in
C3v are given by Altman and Bradley.25 For a1, only the m = 0,
3, 6, . . . coefficients in Eq. (12) are non-zero. For e, we label
the coefficients as cexx

lm and cexy
lm as needed to distinguish the a′

and a′′ components, respectively. We have then cexx
lm ≡ ce

lm , 0
only for m = 1, 2, 4, 5, 7, . . . , and cexy

l,−m = ±ce
lm with the upper

sign applicable to m = 1, 4, 7, . . . , and the lower sign other-
wise. The expansion in Eq. (12) includes all values of l for
l ≥ |m|.

Viel and Eisfeld6 expanded the Hamiltonian in Eq. (11) in
Cartesian coordinates, Q̄ = (x, y) and derived the Jahn-Teller
coupling terms up to 6th order. Thapaliya et al.12 expressed
this expansion in polar coordinates Q̄ = (ρ, γ) resulting in a
Fourier expansion in γ and a power series in ρ. They extended
the expansion, including polynomial terms in ρ up to ρ16 in
certain of the fits to ab initio data. In the limit in which that
expansion is carried to all orders, it is exactly equivalent to the
present expansion given by Eq. (12). The only difference arises
when the respective infinite series are truncated as is always
necessary in a practical situation. The spherical harmonics in
Eq. (12) contain sines and cosines of ρ, which in turn might
be expanded as infinite power series in ρ. Any truncation of
Eq. (12) then keeps some contribution from very high-order
polynomial terms that would be truncated in a finite power
series expansion. Whereas any finite power series expansion
diverges for large ρ, the spherical harmonics are finite every-
where. As we will show below, the result is better behaved fits
yielding a reduced mean square error with the same number
of expansion terms.

For the present application to the vibrational Jahn-Teller
effect, it is convenient to write the diagonal (a1) terms as the
sum of electronic (U) and vibrational (V ) parts,

Ha1
f = U + V . (13)

As before,12 we group both the diagonal and the off-diagonal
terms as Fourier series in γ. We refer to the collectivity of the
coupling terms in cos mγ and sin mγ as mth-order Jahn-Teller
coupling. The relevant Fourier expansions are then

U = U0γ + U3γ cos 3γ + U6γ cos 6γ + · · · , (14)

V = V0γ + V3γ cos 3γ + V6γ cos 6γ + · · · , (15)

He
f ,xx = W1γ cos γ + W2γ cos 2γ + W4γ cos 4γ

+ W5γ cos 5γ + · · · , (16)

He
f ,xy = W1γ sin γ −W2γ sin 2γ + W4γ sin 4γ

−W5γ sin 5γ + · · · , (17)

where the Fourier coefficients are

Umγ (ρ) =
∑

l=m,m+1,...

ba1
lm

Ylm (ρ, γ)
cosmγ

, (18)

Vmγ (ρ) =
∑

l=m,m+1,...

ca1
lm

Ylm (ρ, γ)
cosmγ

, (19)

Wmγ (ρ) =
∑

l=m,m+1,...

ce
lm

Ylm (ρ, γ)
cosmγ

. (20)

In Eqs. (18)–(20), the only non-zero terms are those allowed
by symmetry, that is, m = 0, 3, 6, . . . for Umγ and Vmγ and
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FIG. 1. For CH3OH (a) and CH3SH (b), the relative asymmetric CH stretch frequencies (vertical coordinate) are represented in the (horizontal) 2-dimensional
coordinate space of CSH bend angle ρ (radial coordinate) and the torsional angle γ (polar angle). These vibrationally adiabatic surfaces are fits of the ab initio
data [CCSD(T)/aug-cc-pVTZ] to the extended Jahn-Teller Hamiltonian. For each molecule, the adiabatic surfaces meet in several conical intersections, one at ρ
= 0 and six others for ρ > 0. The V0γ Fourier terms, as well as the entire electronic potential energy (U), have been suppressed in the figure for better viewability.
The white dots indicate the location of global minima of the electronic potential; the black dots indicate the location of torsional saddle points.

m = 1, 2, 4, 5, . . . for Wmγ. The coefficient ba1
lm has been

introduced in Eq. (18) to distinguish the coefficients for the
electronic energy from those for the vibrational energy.

The eigenvalues of Eq. (2) are readily obtained. For exam-
ple, including terms up to m = 6 for Umγ and Vmγ and up to m
= 4 for Wmγ, one gets

Ef± (ρ, γ)=
(
V0γ + U0γ

)
+

(
V3γ + U3γ

)
cos3γ +

(
V6γ + U6γ

)
× cos6γ ± {(W1γ)2 + (W2γ)2 + (W4γ)2 + 2W1γ

×
(
W2γ + W4γ

)
cos3γ + 2W2γW4γ cos6γ}1/2

(21)

Each of the Fourier coefficients Umγ, Vmγ, and Wmγ appear-
ing in Eq. (21) is the one-dimensional function of ρ as defined
in Eqs. (18)–(20). These fast eigenvalues, when plotted in the
large-amplitude space, constitute adiabatic surfaces. Examples
of adiabatic surfaces that obey Eq. (21) are shown in Fig. 1.
The specifics of how these surfaces were obtained are detailed
in Secs. III–V.

Conical intersections between the adiabatic surfaces
(Fig. 1) occur wherever the Jahn-Teller coupling terms, He

f ,xx
[Eq. (16)] and He

f ,xy [Eq. (17)], are both zero. In the absence
of the Jahn-Teller effect, the crude adiabatic basis states
employed here are degenerate everywhere in the (ρ, γ) large-
amplitude space. The term He

f ,xx produces a diagonal splitting
of the basis states and He

f ,xy is the off-diagonal coupling. In
general, CIs can be grouped into three categories. The first
category is symmetry-required CIs, exemplified by the CI at
the C3v geometry (ρ= 0) where both terms are necessarily zero
by symmetry [Ym

l (0, 0) = 0 for m, 0]. The second category
is symmetry-allowed CIs, for which the off-diagonal coupling

He
f ,xy is zero by symmetry and the diagonal splitting He

f ,xx is
zero accidentally. In the present case, the symmetry-allowed
CIs occur in the planes of symmetry, that is, either in the stag-
gered (γ = 60°, 180°, 300°) or eclipsed (γ = 0°, 120°, 240°)
conformations. In the staggered conformation, CIs occur at
values of ρ where ∑

m

(−1)mWmγ (ρ) = 0 (22)

and in the eclipsed conformation where∑
m

Wmγ (ρ) = 0. (23)

Finally, the third category is fully accidental CIs that occur
in non-symmetric conformations at coordinates (ρ, γ) where
both criteria are met accidentally. This paper focuses on the
six symmetry-allowed CIs in each of the subject molecules,
but, as yet, we have not found any fully accidental CIs for a
C3v molecule.

III. COMPUTATIONAL METHODS

Ab initio molecular structure methods are used to obtain
approximations to the adiabatic eigenvalues Ef [Eq. (2)] for
the fast degrees of freedom. In the present computations
on CH3SH, the fast degrees of freedom are the two asym-
metric CH stretch vibrations. The adiabatic energies of the
CH stretch excited states are computed at constrained points
Q̄ = (ρ, γ) in the large-amplitude space. The set of adiabatic
eigenvalues Ef± (ρ, γ) is then fit to the Jahn-Teller Hamilto-
nian as parameterized in Eqs. (11) and (12) and exemplified by
Eq. (21). The computational methods and approximations used
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have been documented12 and are summarized only briefly
here.

The ab initio calculations are partially optimized calcula-
tions in which the values of Q̄ = (ρ, γ) are constrained and all
of the other 10 vibrational coordinates are optimized to yield
a minimum of the electronic potential energy, U (ρ, γ). The
vibrational contributions to the eigenvalues Ef±, measured rel-
ative to the zero-point level, are approximated by the harmonic
frequencies of the two fast normal modes as calculated by the
G09 electronic structure package.26 Two of the normal modes
are well described as asymmetric CH stretches, and, as we have
shown previously for methanol,12 the admixture of the other
internal coordinates in those normal modes does not have a
significant impact on the present results. The results presented
in this paper, both for the partial optimizations and for the
frequency calculations, were obtained at the CCSD(T)/aug-cc-
pVTZ level with “very tight” convergence unless specifically
noted. We will show below that results obtained at two lower
levels are close to those obtained at this level. For CH3SH, the
computed stationary points on the electronic potential energy
surfaces are the global minima (ρ = 83.32°, γ = 60°, 180°,
300°), the torsional saddle points (ρ = 83.01°, γ = 0°, 120°,
240°), and the C3v symmetry point (ρ = 0).

IV. VIBRATIONALLY ADIABATIC SURFACES
A. Vibrational conical intersections in CH3SH

Computed frequencies for the asymmetric CH stretches
are shown in Fig. 2(a) for the staggered (s) and eclipsed (e) con-
formations of CH3SH. At ρ = 0°, in the C3v geometry, the two
asymmetric CH stretches are a degenerate E-type vibration.
In the staggered conformation for small ρ, the A′ frequency is
higher, but then at ρ = 79.0°, it crosses the A′′ frequency to
become lower. In the eclipsed conformation, there is a crossing
in the reverse direction at 70.65°. These crossings are places
where the two asymmetric CH stretches become degenerate,
and when viewed in the context of the 2-D large-amplitude
coordinate space (ρ, γ), they are vibrational conical intersec-
tions (CIs). The crossing at ρ = 0 constitutes a symmetry-
required CI. For ρ > 0, the crossings are symmetry-allowed
CIs because the coupling between the A′ and A′′ vibrations
is necessarily zero in the planes of symmetry that contain the
staggered and eclipsed conformations.

Away from the Cs planes, the coupling becomes nonzero
and the CH stretch vibrations split further apart. A full listing
of the ab initio results on CH3SH is given in Tables S1 and S2
of the supplementary material. These data include the data of
Fig. 2 plus 26 ab initio points in non-Cs geometries. These
non-Cs points are located near the crossings of two frequen-
cies, along the torsional minimum energy path (MEP), and at
γ = 30°. To assure the correct symmetry of the results, the
symmetrized torsional angles were employed12 for all non-
Cs geometries. As was done previously,12 the computed har-
monic vibrational frequencies were used as approximations to
the energies of the quantum mechanical vibrationally excited
states relative to the zero-point vibrational level. In this context,
these computed CH-stretch vibrational frequencies constitute
points on the vibrationally adiabatic potential energy surface.

FIG. 2. (a) Markers indicate the vibrational frequencies for the two asymmet-
ric CH stretch vibrations ν1 (A′) and ν9 (A′′) of CH3SH computed at the ab
initio level CCSD(T)/aug-cc-pVTZ for conformations of Cs symmetry. The
abscissa is the CSH bend angle ρ, measured relative to linearity (ρ = 0). The
staggered (s) and eclipsed conformations (e) are indicated. In (a), the lines
are the global fit to the extended Jahn-Teller Hamiltonian. (b) Markers indi-
cate the harmonic force constants for individual CH bonds in the Cs plane
of symmetry (in) and out-of-plane (out) cross at nearly the same ρ angles. In
(b), the lines are simply smooth curves connecting the markers. The vertical
lines, extending through both parts of the figure, indicate the ρ angles at which
the A′ and A′′ frequencies cross (short-dashed lines) and also the equilibrium
geometry (long-dashed lines).

The locations of the seven CIs in CH3SH provide
a test of the computational level dependence of the
results. The three molecular structure levels tested are (i)
DFT/B3LYP/6-31+(2d,p), (ii) MP2(full)/6-311+(3df,2p), and
(iii) CCSD(T)/aug-cc-pVTZ. The locations of the global min-
ima and torsional saddle points varied within a range∆ρ≤ 0.4°
across the three levels. The locations of the CIs for the MP2
and CCSD(T) levels agree to within ∆ρ = 0.4°. A larger differ-
ence was found between the B3LYP and CCSD(T) levels, with
the staggered CIs found at 6° larger ρ in the B3LYP calcula-
tion. The qualitative pattern of the data, such as those shown
in Fig. 2, was similar in all three calculations. The details of
the computational level dependence are given in Table S3 of
the supplementary material. We find that the phenomenon of
the vibrational CIs and their qualitative pattern is evident even
at the lowest level of calculation. An understanding of the
phenomenon can be found in Fig. 2(b). One sees there that
the variation of the single-bond CH stretch force constants is

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-030728
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-030728
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similar to the variation of the relevant CH stretch normal mode
frequencies. Thus, the vibrational CIs arise primarily from the
variation of the single-bond CH-stretch force constants in the
large-amplitude space.

B. Energy surfaces and fitting parameters

As a practical matter, fitting the ab initio adiabatic ener-
gies Ef±(ρ, γ) to the Jahn-Teller Hamiltonian as given by
Eqs. (11)–(21) faces some challenges. First, the surfaces repre-
sented by Ef±(ρ, γ) are complicated containing several vibra-
tional conical intersections where the two surfaces become
degenerate. Second, many parameters, typically a few dozen,
are required for a good fit. Finally, a fit to an eigenvalue
expression such as Eq. (21) employs an iterative nonlinear
least squares algorithm. In the present case, very good initial
values of the parameters are required for the fit to converge
correctly. Fortunately, an excellent set of initial values may be
obtained by reducing the fit of the 2-dimensional (ρ, γ) data
to Eq. (21), to a series of 1-dimensional fits to Eqs. (18)–(20).
As was done before,12 explicit values of each of the Fourier
terms in Eq. (21) may be obtained as appropriate linear com-
binations of the ab initio electronic and vibrational energies
obtained for a given value of ρ at γ = 0°, 30°, and 60°. That is,
Umγ(ρ) , Vmγ(ρ) , and Wmγ(ρ) for discrete values of ρ (Fig. 3)
are obtained directly from the ab initio data, and then each is
fit as a 1-D function to Eqs. (18)–(20) to obtain initial values of
the parameters, ba1

lm, ca1
lm, and ce

lm. Then, with these initial val-
ues, the global nonlinear fit of Eq. (21) to the entire available
dataset is executed to obtain precise fits and final parameters
that are very close to these initial values.

FIG. 3. Fourier terms of the Jahn-Teller model Hamiltonian [Eqs. (19) and
(20)] for CH3SH as the function of the CSH bending angle ρ. The markers are
calculated directly from the CCSD(T)/aug-cc-pVTZ ab initio data at specific
values of ρ. The curves represent the global fit to Eq. (21). The vertical short-
dashed lines indicate the locations of the vibrational conical intersections
(CIs), and the vertical long-dashed line indicates the value of ρ at the global
minima of the electronic potential.

The ab initio data on CH3SH are well fit by the extended
Jahn-Teller Hamiltonian in the form of Eqs. (18)–(21). For
convenience, the electronic potential energy surface [Eqs. (14)
and (18)] was fit separately from the vibrational energies [the
remaining contributions to Eq. (21)]. The global fit parameters
are listed in Table I. The fit residuals are tabulated along with
the ab initio data in Tables S1 and S2 of the supplementary
material.

The fitted vibrationally adiabatic surfaces for CH3SH as
shown in Fig. 1(b) exhibit seven conical intersections. The
symmetry-required CI occurs at the C3v reference geometry
(ρ = 0°). Three symmetry-allowed CIs occur at ρ = 79.0° in
the staggered conformations, and three more in the eclipsed
conformations at ρ = 70.65°. The CIs at ρ = 79° are very close
to the global minimum electronic energy (ρ = 83.3°), within
the range of zero-point C–S–H bending amplitude. These CIs
occur at low energies and therefore will impact the molecular
dynamics even in the ground state of the large-amplitude vibra-
tions. The CIs in the eclipsed conformation at ρ = 70.65° are
close to the torsional saddle points (ρ = 83.0°), which means
that these CIs are also accessible at relatively low energies and
are within the range of C–S–H zero-point bending amplitude.
By contrast, the CI at the C3v symmetry point (ρ= 0°) occurs at
a second-order saddle point on the electronic potential energy
surface, about 24 000 cm�1 above the global minima and well
out of the reach of the low-energy dynamics.

The adiabatic surfaces for CH3OH can be compared to
those for CH3SH in Fig. 1. For consistency, the CH3OH
ab initio data at the same CCSD(T) level12 were re-fit to
the present extended Hamiltonian [Eqs. (11)–(21)]. Both
molecules have 6 symmetry-allowed vibrational CIs, but their
arrangement in the large-amplitude (ρ, γ) coordinate space is
rather different. In CH3OH, the CIs occur in both the stag-
gered and eclipsed conformations, but in methanol, the CIs
are found only in the eclipsed conformation at ρ = 62° and
92°. In methanol, CIs at ρ = 62° are near the torsional saddle
points and are accessible at relatively low energies within the
range of COH zero-point bending amplitude.

V. DISCUSSION

The present expansion of the Jahn-Teller Hamiltonian in
terms of the spherical harmonics may be compared to our ear-
lier work12 in which the same Hamiltonian was expanded in
a power series in the CXH angle ρ. The expansion in the tor-
sional angle γ is the same for both. For CH3OH, with the
same number of terms (17 for the electronic part and 38 for
the vibrational part), the spherical harmonic expansion gave
an overall RMS error of 0.21 cm�1 as compared to 0.57 cm�1

reported earlier.12 We were not able to satisfactorily fit the
electronic part of the potential energy for CH3SH with the
polynomial expansion, which is what prompted us to develop
the spherical harmonic approach. In CH3SH, the electronic
energy of the C3v geometry is 24 000 cm�1 above the global
minimum as compared to 11 000 cm�1 for CH3OH. To fit
the CH3SH electronic potential to the same precision as for
CH3OH, many more terms were required, which resulted in
spurious oscillations. In the present fits, the spherical harmonic
expansion with the same number of terms does nearly as well

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-030728
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-147-030728
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TABLE I. Jahn-Teller parameters for CH3SH.

Fourier terma Parameterb Valuec Fourier terma Parameterb Valuec

U0γ ba1
0 0 33 009.50 (36) V0γ ca1

0 0 11 245.30 (0.5)
ba1

1 0 �15 062.20 (50) ca1
1 0 �24.20 (0.6)

ba1
2 0 30 758.00 (41) ca1

2 0 70.84 (0.3)
ba1

3 0 �2 049.77 (23) ca1
4 0 10.52 (0.11)

ba1
4 0 3 423.75 (7) ca1

8 0 �0.60 (0.10)
ba1

6 0 842.11 (1.0) ca1
10 0 �1.20 (0.09)

ba1
8 0 279.80 (0.3) ca1

12 0 �0.50 (0.09)
ba1

10 0 105.72 (0.19) ca1
14 0 �0.23 (0.09)

ba1
12 0 40.50 (0.16) V3γ ca1

3 3 7.89 (0.17)
ba1

14 0 16.32 (0.15) ca1
4 3 0.12 (0.20)

ba1
16 0 7.09 (0.13) ca1

5 3 3.79 (0.16)
ba1

18 0 2.05 (0.09) ca1
7 3 1.74 (0.10)

U3γ ba1
3 3 598.82 (2) ca1

9 3 0.61 (0.09)
ba1

4 3 �195.96 (3) ca1
11 3 0.13 (0.03)

ba1
5 3 290.25 (2) V6γ ca1

6 6 0.07 (0.02)
ba1

7 3 30.21 (1.6) ca1
7 6 �0.02 (0.03)

ba1
8 3 13.64 (1.7) W1γ ce

1 1 9.24 (0.2)
ba1

9 3 17.68 (0.8) ce
2 1 �19.79 (0.3)

ba1
11 3 2.54 (0.07) ce

3 1 �2.88 (0.06)
ba1

13 3 3.67 (0.15) ce
5 1 �6.38 (0.09)

ba1
15 3 0.49 (0.04) ce

7 1 �2.92 (0.08)
ba1

17 3 0.65 (0.12) ce
9 1 �1.15 (0.07)

U6γ ba1
6 6 �0.12 (0.03) ce

11 1 �0.22 (0.02)
ba1

8 6 �0.57 (0.03) W2γ ce
2 2 3.98 (0.11)

ce
4 2 �4.14 (0.2)

ce
5 2 2.58 (0.15)

Calculation method CCSD(T) ce
10 2 0.69 (0.09)

Basis set aug-cc-pVTZ ce
12 2 0.27 (0.08)

RMS (vibrational)d 0.20 W4γ ce
5 4 �0.65 (0.14)

RMS (overall)d 0.26 ce
6 4 �0.75 (0.15)

ce
10 4 0.24 (0.10)

aThe Fourier terms Umγ , Vmγ , and Wmγ are defined in Eqs. (14)–(20).
bThe parameters bΓlm were fit to 54 ab initio points on the electronic potential, and cΓlm were fit to corresponding 108 values of the
asymmetric CH stretch vibrational frequencies. Parameters omitted from this table were set to zero because they did not improve
the quality of the fit.
cBoth the parameter values and their uncertainties in parentheses are given in cm�1 units.
dRoot-mean-square errors of the fits. The RMS (overall) includes contributions from both the vibrational and electronic fits.

(overall RMS 0.26 cm�1) for CH3SH as it does for CH3OH,
and without any spurious oscillations. Also for values of ρ
greater than represented in the ab initio data, a high-order poly-
nomial expansion quickly diverges toward ± infinity, whereas
the spherical harmonics remain finite everywhere.

An important difference between the two approaches
stems from the origin of the power series Hamiltonian as an
expansion in planar nuclear coordinates, (x, y),6 which can be
expressed in terms of the planar polar coordinates Q̄ = (ρ, γ) .
In the present context where the distance of the XH proton
from the X atom is roughly constant, large-amplitude motion
is better described as motion on a sphere than motion in a
plane, and we identify Q̄ = (ρ, γ) as the spherical polar angles.
The expansion in spherical harmonics takes advantage of this
approximate description of the curvilinear nature of the large-
amplitude motion. Of course when ρ remains small, the motion
is nearly planar and the traditional low-order power series
expansion is quite adequate.

The asymmetric CH stretches in both CH3SH and CH3OH
and their variation in the large-amplitude space are well

described by the Jahn-Teller Hamiltonian and both exhibit
multiple vibrational conical intersections accessible at rel-
atively low energy. However the pattern of the CIs [Figs.
1(a) and 1(b)] is quite different from all of the CIs confined
to eclipsed geometries in CH3OH. In CH3OH, the 1st- and
2nd-order Jahn-Teller interactions (W1γ and W2γ) are of com-
parable magnitude in the low-energy region of the potential,
which yields a net interaction that goes to zero (or nearly to
zero) in eclipsed conformations and produces a large split-
ting in the staggered conformations. In CH3SH, the 1st-order
interaction is dominant but changes sign near the equilibrium
CXH bending angle, which leads to CIs on both staggered and
eclipsed conformations. Recent results23 show that CD3OH
also has a similar pattern of CIs which is between the adia-
batic surfaces representing the asymmetric CD stretches and
that their locations are close to those in CH3OH. We have seen
from a comparison of Figs. 2(a) and 2(b) that the CIs derive
primarily from the variation of the single-bond force-constant
in the large-amplitude space. This means that the CH bond
force constants exhibit cos γ and cos 2γ variations with γ in the
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1st- and 2nd-order Jahn-Teller interactions, respectively. A sig-
nificant difference relative to the two methanol isotopologues
is the larger size of the sulfur atom, which keeps the XH hydro-
gen about 0.5 Å further away from the methyl hydrogens in
CH3SH, and this could be connected with the relative weakness
of the 2nd-order Jahn-Teller interaction in that molecule.

Xu, Hougen, and Lees27 have reported an ab initio inves-
tigation of the CH stretch vibrations along the torsional mini-
mum energy path of methanol. They discussed three limiting
coupling cases:

Case 1: Only first-order Jahn-Teller coupling (W1γ , 0;
W2γ = 0).

Case 2: Only second-order Jahn-Teller effect (W1γ = 0;
W2γ , 0).

Case 3: First and second orders equal in magnitude (W1γ

+ W2γ = 0).

A fourth case, W1γ −W2γ = 0, was mentioned but not num-
bered. In all of these limiting coupling cases, the 4th-order
(W4γ) and higher Jahn-Teller couplings were assumed to be
zero. They identified methanol as being close to Case 3, lead-
ing to a near-cancelation of the Jahn-Teller interactions at the
torsional saddle point. Here, where we include a general depen-
dence on ρ [any number of terms in Eq. (20)], the limiting
cases are still useful points of reference. In CH3OH, the Case
3 criterion becomes exact at the CIs located in the eclipsed
geometry. In CH3SH, the 2nd-order JT coupling is small, and
Case 1 becomes a reasonable approximation.

The vibrationally adiabatic surfaces represented in
Figs. 1(a) and 1(b) point to qualitative predictions about the
nature of the infrared spectra of the two subject molecules
in the CH-stretching region. For each molecule, the global
equilibrium geometry is in the staggered conformation, with
a substantially bent CXH angle, ρ = 83° and 72° for CH3SH
and CH3OH, respectively. Accordingly, the splitting of the
adiabatic surfaces in this region will provide a measure of the
expected splitting of the two asymmetric CH-stretch bands.
In CH3OH, the adiabatic surfaces are well separated in agree-
ment with the traditional assignment, even in low-resolution
spectra,28 of the two asymmetric CH stretches as separate
vibrational bands. High-resolution experiments29,30 and full-
dimensional theory31–36 agree that the splitting between the
two vibrations is in the range of 40–45 cm�1. In CH3SH, there
is a CI near the global minimum energy geometry, and conse-
quently the two adiabatic surfaces are nearly degenerate in that
region. This implies that the fundamental frequencies of the
two asymmetric CH stretches will be nearly degenerate. This
expectation is supported by a recent high-resolution spectrum
of CH3SH,37 which has the appearance of a single E-type per-
pendicular band characteristic of a degenerate CH stretch in
a symmetric rotor. The high-resolution analysis indicates that
the A′ and A′′ asymmetric stretches have a small splitting of
1–2 cm�1. The qualitative appearance of the band as a degen-
erate perpendicular band results from the a-type Coriolis cou-
pling which is much larger over the range of populated K-levels
than the J ′ = 0 splitting of the A′ and A′′ components. Clearly,
the arrangement of the conical intersections between the adia-
batic surfaces, as modeled by the extended Jahn-Teller Hamil-
tonian, has a striking impact on the form of the infrared spectra.

In principle, the present extended Jahn-Teller model could
serve as the starting point for a detailed simulation of the high-
resolution spectra, but that would require a number of steps:
(i) computation of the dynamical Jahn-Teller states including
both slow and fast degrees of freedom, (ii) development of
a torsion-vibration-rotation Hamiltonian based on the Jahn-
Teller model, and (iii) inclusion of a zero-point average over
the other 11 vibrations that are not treated explicitly in the
present model.

As was elaborated in the previous work,12,13 the present
application of the Jahn-Teller Hamiltonian is predicated on
an approximate separation of the high- and low-frequency
vibrations and is therefore highly approximate. Most critically,
the present examples retain only two high-frequency and two
low-frequency degrees of freedom. The other 11 vibrational
coordinates are represented only implicitly through the par-
tial optimizations in the ab initio calculations, but then these
coordinates are fixed allowing no further exploration of the
potential or the dynamics in these degrees of freedom. Among
the neglected phenomena are the stretch-bend resonances38,39

and the interactions of the asymmetric CH stretched with the
symmetric CH stretch (ν3 in CH3OH and ν2 in CH3SH).12

The present applications are reduced-dimensional treatments
that allow only certain aspects of the vibrational interactions
to be quantified and visualized. The adiabatic concept is valu-
able, notwithstanding these limitations, because they provide
a vocabulary and a frame of reference for describing important
aspects of complex high-dimensional vibrational dynamics.

VI. SUMMARY

An expansion in the spherical harmonics has enabled an
extension of the E ⊗ e Jahn-Teller Hamiltonian for treatment
of nuclear motion that extends far from the 3-fold symmetric
reference geometry. While this development is general, it is
particularly applicable to the vibrational Jahn-Teller effect in
molecules like CH3SH and CH3OH where the global minima
on the electronic potential energy surfaces are far from the C3v

geometry. Both molecules have multiple conical intersections
(CIs) between adiabatic surfaces representing the asymmet-
ric CH stretch vibrations, but the arrangement of the CIs in
configuration space is qualitatively different. That contrast is
reflected in the experimental infrared spectra.

SUPPLEMENTARY MATERIAL

See supplementary material for the ab initio data and fit
residuals for CH3SH (Tables S1 and S2) and for their depen-
dence on computational level (Table S3). Table S4 contains
the parameters for a fit of the corresponding CH3OH data to
the present Hamiltonian.
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