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Communication: Conical intersections between vibrationally adiabatic
surfaces in methanol
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(Received 5 March 2014; accepted 31 March 2014; published online 22 April 2014)

A set of seven conical intersections (CI’s) in methanol between vibrationally adiabatic surfaces is
reported. The intersecting surfaces represent the energies of the two asymmetric CH stretch vi-
brations regarded as adiabatic functions of the torsion and COH bend angles. The ab initio data
are well described by an extended Zwanziger and Grant (E ⊗ e) model [J. W. Zwanziger and E.
R. Grant, J. Chem. Phys. 87, 2954 (1987)] that might also be regarded as an extension of the
XHL model [L.-H. Xu, J. T. Hougen, and R. M. Lees, J. Mol. Spectrosc. 293–294, 38 (2013)].
The CI’s illuminate the role of geometric phase in methanol. More generally, they suggest the
importance of energy transfer processes localized near the CI’s. © 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4871657]

Conical intersections (CI’s) between electronic potential
energy surfaces are now known to be widespread throughout
electronic spectroscopy and are responsible for ultrafast elec-
tronic relaxation in diverse circumstances.1–3 Whereas these
electronic surfaces represent the adiabatic separation of elec-
tronic and nuclear motions under the Born-Oppenheimer ap-
proximation, it is also possible in some cases to make an ap-
proximate adiabatic separation of fast and slow vibrational
motions. In such cases, the motion of the high-frequency vi-
brations, which might include hydride stretches, can be solved
quantum mechanically at each molecular geometry along the
low frequency, large-amplitude torsional or bending coordi-
nates. These slower motions can then be solved in an effective
potential that is the sum of the electronic potential plus the
high-frequency vibrational energies as they vary in the large-
amplitude space. Recently, Hamm and Stock4, 5 introduced the
concept of CI’s between vibrationally adiabatic surfaces as a
source of ultrafast vibrational relaxation.

The adiabatic approximation has been applied to
methanol,6–8 the high frequency vibrations being the OH and
CH stretches (3860, 2999, 2956, and 2844 cm−1) and the low
frequency coordinate being the torsional angle, γ . Fehrensen
et al.7 applied an adiabatic reaction path Hamiltonian to ac-
count for both the decrease of the torsional tunneling split-
tings with OH stretch (ν1) excitation and also the inverted
torsional tunneling splittings in the first excited states of the
asymmetric CH stretches, ν2 and ν9. They found that a geo-
metric phase of –1 was accumulated for the CH vibrations ν2

and ν9 on a torsional rotation of 2π . Accordingly, they solved
the torsional motion with 4π boundary conditions. Wang and
Perry9 found that an internal coordinate model of the CH
stretches with only Jahn-Teller-like coupling terms in cosγ
gave the correct tunneling splittings. Clasp and Perry6 showed
that an adiabatic approximation to this model also gave qual-
itatively correct results for the tunneling splittings in the first

a)Author to whom correspondence should be addressed. Electronic mail:
dperry@uakron.edu

excited CH stretch states. Recently, Xu et al.10, 11 have per-
formed ab initio frequency calculations along the steepest de-
scent internal rotation path. To describe these results, they
developed a two-state model in which the E-type symmet-
ric rotor CH stretch basis states are coupled by both Jahn-
Teller-like (exp(iγ )) and Renner-Teller-like (exp(–2iγ )) cou-
pling terms to form the two asymmetric CH stretch states. Xu
et al.11 found that the vibrational amplitudes for both ν2 and
ν9 returned to their original values (did not change sign) upon
a 2π internal rotation along the minimum energy path (MEP);
that is, the geometric phase accumulated is +1.

Zwanziger and Grant12 studied E⊗e systems in which
both Jahn-Teller and Renner-Teller couplings are present, the
former scaling linearly with the deviation ρ from the C3v

reference geometry and the latter scaling quadratically. They
showed that there are necessarily four CI’s between the cou-
pled electronic surfaces, one at the C3v reference geometry
and three more at distorted geometries of Cs symmetry at the
values of ρ where the magnitudes of the linear and quadratic
couplings become equal. Transport along a path in the two-
dimensional (γ , ρ) coordinate space that encloses one CI re-
sults in the accumulation by the electronic wavefunctions of a
geometric phase of –1 and that a path enclosing all four CI’s
results in a geometric phase of (–1)4 = +1.

While their work12 was formulated in the context of
a doubly degenerate (E) electronic state interacting with a
degenerate (e) vibrational mode, the same formalism may
also be applied to the case of methanol. In the paragraphs
below, we present the first example of a set of vibrational
CI’s in an E ⊗ e system. In methanol, the adiabatic sepa-
ration is between the high-frequency degenerate CH stretch
in the electronic ground state and a pair of large-amplitude
low-frequency modes. The energies of the asymmetric CH
stretch vibrations are considered as functions of the torsional
angle, γ , and the COH bend angle, ρ. In the C3v refer-
ence geometry where the COH group is linear (ρ = 0◦),
the two asymmetric CH stretch vibrations (ν2 and ν9) be-
come degenerate (E), and the large-amplitude coordinates ρ

0021-9606/2014/140(16)/161101/4/$30.00 © 2014 AIP Publishing LLC140, 161101-1
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FIG. 1. (a) Vibrational frequencies for the two asymmetric CH stretch vibra-
tions (ν2 A′ and ν9 A′′) of methanol computed at the ab initio level MP2/6-
311+G(3df,2p) for conformations of Cs symmetry. The abscissa is the COH
bend angle ρ, measured relative to linearity (ρ = 0◦). The staggered (s) and
eclipsed (e) conformations are indicated. The model calculation is shown as
solid lines. The vertical lines, extending through both parts of the figure, in-
dicate the ρ angles at which the A′ and A′′ frequencies cross (short dashes)
and also the equilibrium geometry (long dashes). (b) The harmonic force
constants for individual CH bonds in the Cs plane of symmetry (in) and out-
of-plane (out) cross at nearly the same ρ angles.

and γ together become a degenerate COH bending coordinate
(e).

One significant difference encountered when applying
the E ⊗ e formalism to the vibrationally adiabatic surfaces in
methanol is that the equilibrium geometry is now far from the
C3v reference geometry (ρ = 71◦) rather than close to it as is
typically the case for Jahn-Teller coupling between electronic
surfaces. Whereas Zwanziger and Grant12 neglected anhar-
monicity and kept only the coupling terms of the lowest order
in ρ, (ρexp(iγ ) and ρ2exp(–2iγ )), it will be necessary in the
methanol case to include higher-order terms in ρ.

To search for CI’s in methanol, ab initio calculations
were undertaken for Cs symmetry conformations, both stag-
gered (γ = 180◦) and eclipsed (γ = 0◦) using the same
level of theory employed by Xu et al.11, 13 ((MP2 = Full/6-
311+G(3df,2p), OPT = (Z-matrix,Vtight)). The stationary
points on the electronic potential energy surface are the global
minima (ρ = 71.42◦, γ = 60◦, 180◦, 300◦), the torsional
saddle points (ρ = 70.95◦, γ = 0◦, 120◦, 240◦), and the
C3v symmetry point (ρ = 0◦). Away from these stationary
points, partially optimized calculations were done with ρ and
γ fixed at particular values and the other 10 internal coor-

dinates optimized to obtain the lowest electronic energy. In
methanol, vibrational CI’s occur when the two asymmetric
CH stretch vibrations, A′ ν2 and A′′ ν9, become degener-
ate. Vibrational frequency calculations at each of the com-
puted Cs geometries (Fig. 1) show that the A′ and A′′ fre-
quencies, degenerate by symmetry at ρ = 0◦, also cross in
eclipsed methanol at ρ = 61.9◦ and 93.6◦. In addition, 95
ab initio points in non-Cs geometries were computed in the
vicinities of the crossings, along the torsional MEP, and at
γ = 30◦ to make a total of 159 unique ab initio points
(see Tables S1 and S2 and Fig. S1 in the supplementary
material14).

There are a number of conceptual steps to identify the
crossing of these frequencies and force constants with CI’s.
Within the harmonic approximation used in the normal mode
analysis, the CH stretch frequencies provide approximations
to the energies of the quantum mechanical CH stretch excited
states relative to the zero-point vibrational level. Since these
vibrational energies are calculated for the high-frequency CH
stretch modes as a function of the large-amplitude coordinates
ρ and γ , they represent an adiabatic separation of the high-
and low-frequency vibrational modes.

Strictly speaking, the normal mode calculation is only
valid at the stationary points; however, we argue that the CH
stretches mix only negligibly with the low frequency modes
and that the computed “normal mode” frequencies provide
a credible description of how the CH frequencies vary as a
function of the low-frequency coordinates. Evidence to sup-
port this assertion comes from the fact that the crossings of the
normal mode frequencies (Fig. 1(a)) occur at nearly the same
bending angles as the crossings of the single CH bond force
constants (Fig. 1(b)). The overall appearance of the graphs
in Figs. 1(a) and 1(b) is very similar suggesting that the ex-
istence and locations of the frequency crossings are primar-
ily attributable to the variation of the single-bond force con-
stants. Additional evidence supporting the validity of the CH
stretch normal mode frequencies computed at non-stationary
points comes from the close agreement of projected and non-
projected frequency calculations along the torsional MEP (see
Fig. S2 in the supplementary material14).

Calculations at the lower level, B3LYP//6-31+G(2d,p),
yielded frequency crossings in the same locations (±0.5◦)
and the resulting graphs (see Fig. S3 in the supplementary
material14) are essentially identical in appearance to Fig. 1.
In new report,15 higher level calculations (CCSD(T)/aug-
ccpVTZ) confirm the MP2 results of Xu et al.,11 regarding
the behavior along the torsional MEP. The consistency across
different levels suggests that neither the existence nor the
locations of the CI’s is strongly dependent on the level of
calculation.

With 5 of the 12 internal coordinates, the 3 CH stretches,
ρ and γ , treated explicitly, the other 7 vibrational coordinates
are only represented implicitly by their variation in the par-
tially optimized calculations. The relative energies of the dif-
ferent CI’s are given by the variation of the energies of the
CH-stretch states added to the much larger variation of the
electronic potential. For example, at the present MP2 level,
the torsional saddle points are 357 cm−1 above the global min-
ima and the C3v symmetry point at ρ = 0◦ is at 10 967 cm−1.
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Following Zwanziger and Grant,12 we apply an adiabatic
2-state model for the asymmetric CH stretch frequencies,

Hadiabatic
vib

hc

=
[

ω0(ρ) 1
2f (ρ)e−iγ + 1

2g(ρ)e2iγ

1
2f (ρ)eiγ + 1

2g(ρ)e−2iγ ω0(ρ)

]

(1)

but here allowing higher-order terms in ρ with the polynomial
expansions,

ω0(ρ) = ω
(0)
0 +

∑7

i=2
ω

(i)
0 ρi,

f (ρ) =
∑7

i=1
f (i)ρi, (2)

g(ρ) =
∑7

i=2
g(i)ρi.

The eigenvalues of the Hamiltonian in (1) are

ωadiabatic
± (γ, ρ)

= ω0 (ρ) ± 1
2

[
f 2 (ρ) + 2f (ρ) g (ρ) cos 3γ + g2 (ρ)

] 1
2 .

(3)

Equation (3) was fitted to the Cs symmetry data
(Fig. 1(a)), including both the staggered and eclipsed con-
formations. The ρ-dependent parameters, Eq. (2), are plotted
in Fig. 2, and the resulting adiabatic surfaces are plotted in
Fig. 3. Although the fit included only data from the Cs geome-
tries, the resulting surfaces also provide satisfying agreement
with all of the non-Cs data as well. The overall root-mean-
square deviation of the model compared to all 318 ab initio
frequencies is 0.9 cm−1.

Most prominent in Fig. 3 is the presence of seven conical
intersections, one occurring in the C3v reference geometry (ρ
= 0◦), and six more occurring in eclipsed conformations (Cs)

FIG. 2. The model parameters obtained from the overall fit (lines) and com-
puted independently at each value of ρ (points). The vertical guide lines are
the same as in Fig. 1.

FIG. 3. Relative model frequencies of the two asymmetric CH stretch vibra-
tions in methanol, represented as surfaces in the two-dimensional coordinate
space of the COH bend angle ρ and the torsional angle γ . The figure shows
seven conical intersections: one at ρ = 0◦, three at ρ = 62◦, and three at
ρ = 94◦.

at ρ = 62◦ and 94◦. The CI’s occur when the off-diagonal
terms in Eq. (1) are zero. In the present situation, this occurs
in the eclipsed conformation when the g and f parameters are
equal in magnitude (Fig. 2). Since the CI’s at 62◦ are close
to the respective torsional saddle points at ρ = 71◦, that is,
within the range of the COH zero-point bending amplitude,
these CI’s are accessible at relatively low energies and there-
fore may impact the molecular dynamics under a wide range
of conditions.

To model their ab initio frequencies along the torsional
MEP, Xu et al.11 developed a model (referenced here as the
XHL model) with two coupling parameters, k1 and k2,

ω2
± (γ ) = 1

m

{
kE ± [

k2
1 + k2

2 + 2k1k2 cos 3γ
] 1

2

}
. (4)

Using the approximation (1+x)1/2 ≈ 1+ x/2 for small x, the
XHL model is equivalent to the present model (Eq. (3)) at
a fixed value of ρ, with ω2

0 = kE /m, f 2 = k2
1 /mkE , and

g2 = k2
2 /mkE . In this context, the present model can be

thought of as an extension of the XHL model to include the
ρ-dependence of their parameters.

To this point, we have considered two low-frequency,
large-amplitude coordinates, ρ and γ . When the dimension-
ality of the low-frequency coordinate space is 3 or more,
the CI’s become seams or hyper-seams of CI’s.16–18 All
eight of the low-frequency modes, including the methyl rocks
and deformations, could arguably be included in the low-
frequency coordinate space. At present, for purpose of ex-
emplifying seams of conical intersections, we choose to in-
clude just one additional coordinate, the CO stretch rCO, to
form a three-dimensional low-frequency coordinate space. In
CH3OH, the CO stretch is the second lowest vibration after
the torsion; in CH3OD, the torsion, COD bend, and CO stretch
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FIG. 4. The location of the seam of conical intersections for eclipsed
methanol (markers) and a polynomial fit (solid blue line) is plotted in terms
of the CO bond length and the COH bending angle. The red dotted line rep-
resents the partially optimized calculations of Fig. 1 and the conical intersec-
tions shown in Figs. 1 and 3 are located at the intersections of the blue solid
and red dotted lines. The dashed lines indicate the zero-point geometries of
both coordinates, and the grey shaded area represents the approximate extent
of the zero-point amplitudes.

are the three lowest frequencies.19 Proceeding with the above
methodology, we varied ρ at several different fixed values of
rCO to find a seam of CI’s (Fig. 4) in the eclipsed plane.

Fig. 4 shows that the CI’s at ρ = 62◦ and 94◦ belong
to the same seam of CI’s, a significant length of which lies
within the range of the zero-point motions of the COH bend
and CO stretch. This reinforces our assertion that the CI’s are
accessible to the dynamics at relatively low energies. Alto-
gether then in the three-dimensional γ , ρ, rCO space, the data
reveal four seams of CI’s, one symmetry-required seam along
the C3v symmetry line ρ = 0◦, and three more symmetry-
allowed seams like the one represented in Fig. 4, one in each
eclipsed plane, γ = 0◦, 120◦, and 240◦.

These conical intersections illuminate the role of geomet-
ric phase in methanol. Since four CI’s are enclosed by the
MEP for a 2π torsional rotation, the Zwanziger and Grant
theorem12 predicts a geometric phase of +1 in agreement with
the findings of Xu et al.11, 15 However, from a semiclassical
point of view, one might consider additional classical paths
for a 2π torsional rotation. Since the COH zero-point bend-
ing amplitude is large (±11◦) extending through the location
of the CI’s at 62◦, there are other possible torsional paths that
could enclose an odd number of CI’s, say 1 or 3. Thus, in
a fully coupled treatment, the ν2 and ν9 wavefunctions may
be linear combinations of basis states of differing geometric
phase, with the +1 contribution being dominant. States with
mixed geometric phase have been found previously in model
calculations on methanol.6, 8, 9, 20

Since these CI’s exist only as an abstraction in the con-
text of an approximate adiabatic separation of high- and low-
frequency vibrations, it is relevant to ask, what, if any, im-
pact do they have on the observable energy level structure of
methanol? Xu et al.11 have already shown that physically dif-

ferent models7, 9, 11 containing one or both of the Jahn-Teller-
and Renner-Teller-like coupling terms are equally good at
predicting the inverted torsional tunneling splittings in the
CH-stretch fundamentals. However, the CI’s will likely im-
pact the energy level patterns of the higher torsional and
COH bending levels built on the CH stretch fundamentals and
overtones.

The CI’s have direct implications for both the intramolec-
ular and intermolecular dynamics of methanol. Xu et al.11, 15

have shown that the vibrational characters of ν2 and ν9 change
sharply over a small range of the torsional angle near the
eclipsed conformation. The presence of nearby CI’s explains
this behavior and will allow quantitative predictions of non-
adiabatic processes (surface hopping) near the eclipsed ge-
ometry. In general, in the context of either intramolecular
or collision-induced dynamics, the CI’s provide a connection
between the vibrationally adiabatic surfaces. Therefore, one
should expect acceleration of energy transfer processes in lo-
calized regions around the CI’s. Just as electronic conical in-
tersections are now known to be ubiquitous throughout elec-
tronic spectroscopy,1–3 vibrational conical intersections may
also be widespread, consequently impacting the vibrational
dynamics4, 5 in diverse chemical systems.

The authors are grateful to David Yarkony and Tucker
Carrington for helpful discussions. Support for this work was
provided by the Division of Chemical Sciences, Offices of Ba-
sic Energy Sciences, Office of Energy Research, U.S. Depart-
ment of Energy under Grant No. DE-FG02-90ER14151.
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