2,002 research outputs found
Quasi-Newton particle Metropolis-Hastings
Particle Metropolis-Hastings enables Bayesian parameter inference in general
nonlinear state space models (SSMs). However, in many implementations a random
walk proposal is used and this can result in poor mixing if not tuned correctly
using tedious pilot runs. Therefore, we consider a new proposal inspired by
quasi-Newton algorithms that may achieve similar (or better) mixing with less
tuning. An advantage compared to other Hessian based proposals, is that it only
requires estimates of the gradient of the log-posterior. A possible application
is parameter inference in the challenging class of SSMs with intractable
likelihoods. We exemplify this application and the benefits of the new proposal
by modelling log-returns of future contracts on coffee by a stochastic
volatility model with -stable observations.Comment: 23 pages, 5 figures. Accepted for the 17th IFAC Symposium on System
Identification (SYSID), Beijing, China, October 201
Particle Metropolis-Hastings using gradient and Hessian information
Particle Metropolis-Hastings (PMH) allows for Bayesian parameter inference in
nonlinear state space models by combining Markov chain Monte Carlo (MCMC) and
particle filtering. The latter is used to estimate the intractable likelihood.
In its original formulation, PMH makes use of a marginal MCMC proposal for the
parameters, typically a Gaussian random walk. However, this can lead to a poor
exploration of the parameter space and an inefficient use of the generated
particles.
We propose a number of alternative versions of PMH that incorporate gradient
and Hessian information about the posterior into the proposal. This information
is more or less obtained as a byproduct of the likelihood estimation. Indeed,
we show how to estimate the required information using a fixed-lag particle
smoother, with a computational cost growing linearly in the number of
particles. We conclude that the proposed methods can: (i) decrease the length
of the burn-in phase, (ii) increase the mixing of the Markov chain at the
stationary phase, and (iii) make the proposal distribution scale invariant
which simplifies tuning.Comment: 27 pages, 5 figures, 2 tables. The final publication is available at
Springer via: http://dx.doi.org/10.1007/s11222-014-9510-
Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models
This tutorial provides a gentle introduction to the particle
Metropolis-Hastings (PMH) algorithm for parameter inference in nonlinear
state-space models together with a software implementation in the statistical
programming language R. We employ a step-by-step approach to develop an
implementation of the PMH algorithm (and the particle filter within) together
with the reader. This final implementation is also available as the package
pmhtutorial in the CRAN repository. Throughout the tutorial, we provide some
intuition as to how the algorithm operates and discuss some solutions to
problems that might occur in practice. To illustrate the use of PMH, we
consider parameter inference in a linear Gaussian state-space model with
synthetic data and a nonlinear stochastic volatility model with real-world
data.Comment: 41 pages, 7 figures. In press for Journal of Statistical Software.
Source code for R, Python and MATLAB available at:
https://github.com/compops/pmh-tutoria
A graph/particle-based method for experiment design in nonlinear systems
We propose an extended method for experiment design in nonlinear state space
models. The proposed input design technique optimizes a scalar cost function of
the information matrix, by computing the optimal stationary probability mass
function (pmf) from which an input sequence is sampled. The feasible set of the
stationary pmf is a polytope, allowing it to be expressed as a convex
combination of its extreme points. The extreme points in the feasible set of
pmf's can be computed using graph theory. Therefore, the final information
matrix can be approximated as a convex combination of the information matrices
associated with each extreme point. For nonlinear systems, the information
matrices for each extreme point can be computed by using particle methods.
Numerical examples show that the proposed technique can be successfully
employed for experiment design in nonlinear systems.Comment: Accepted for publication in the 19th World Congress of the
International Federation of Automatic Control, Cape Town, South Africa. Six
pages, three figure
Newton-based maximum likelihood estimation in nonlinear state space models
Maximum likelihood (ML) estimation using Newton's method in nonlinear state
space models (SSMs) is a challenging problem due to the analytical
intractability of the log-likelihood and its gradient and Hessian. We estimate
the gradient and Hessian using Fisher's identity in combination with a
smoothing algorithm. We explore two approximations of the log-likelihood and of
the solution of the smoothing problem. The first is a linearization
approximation which is computationally cheap, but the accuracy typically varies
between models. The second is a sampling approximation which is asymptotically
valid for any SSM but is more computationally costly. We demonstrate our
approach for ML parameter estimation on simulated data from two different SSMs
with encouraging results.Comment: 17 pages, 2 figures. Accepted for the 17th IFAC Symposium on System
Identification (SYSID), Beijing, China, October 201
Sequential Monte Carlo Methods for System Identification
One of the key challenges in identifying nonlinear and possibly non-Gaussian
state space models (SSMs) is the intractability of estimating the system state.
Sequential Monte Carlo (SMC) methods, such as the particle filter (introduced
more than two decades ago), provide numerical solutions to the nonlinear state
estimation problems arising in SSMs. When combined with additional
identification techniques, these algorithms provide solid solutions to the
nonlinear system identification problem. We describe two general strategies for
creating such combinations and discuss why SMC is a natural tool for
implementing these strategies.Comment: In proceedings of the 17th IFAC Symposium on System Identification
(SYSID). Added cover pag
- …
