25 research outputs found

    Salmeterol, a \u3b22 Adrenergic Agonist, Promotes Adult Hippocampal Neurogenesis in a Region-Specific Manner.

    Get PDF
    Neurogenesis persists in the subgranular zone of the hippocampal formation in the adult mammalian brain. In this area, neural progenitor cells (NPCs) receive both permissive and instructive signals, including neurotransmitters, that allow them to generate adult-born neurons which can be functionally integrated in the preexisting circuit. Deregulation of adult hippocampal neurogenesis (ahNG) occurs in several neuropsychiatric and neurodegenerative diseases, including major depression, and represents a potential therapeutic target. Of interest, several studies suggested that, both in rodents and in humans, ahNG is increased by chronic administration of classical monoaminergic antidepressant drugs, suggesting that modulation of this process may participate to their therapeutic effects. Since the established observation that noradrenergic innervations from locus coeruleus make contact with NPC in the dentate gyrus, we investigated the role of beta adrenergic receptor (\u3b2-AR) on ahNG both in vitro and in vivo. Here we report that, in vitro, activation of \u3b22-AR by norepinephrine and \u3b22-AR agonists promotes the formation of NPC-derived mature neurons, without affecting NPC survival or differentiation toward glial lineages. Additionally, we show that a selective \u3b22-AR agonist able to cross the blood-brain barrier, salmeterol, positively modulates hippocampal neuroplasticity when chronically administered in adult na\uefve mice. Indeed, salmeterol significantly increased number, maturation, and dendritic complexity of DCX+ neuroblasts. The increased number of DCX+ cells was not accompanied by a parallel increase in the percentage of BrdU+/DCX+ cells suggesting a potential prosurvival effect of the drug on neuroblasts. More importantly, compared to vehicle, salmeterol promoted ahNG, as demonstrated by an increase in the actual number of BrdU+/NeuN+ cells and in the percentage of BrdU+/NeuN+ cells over the total number of newly generated cells. Interestingly, salmeterol proneurogenic effects were restricted to the ventral hippocampus, an area related to emotional behavior and mood regulation. Since salmeterol is commonly used for asthma therapy in the clinical setting, its novel pharmacological property deserves to be further exploited with a particular focus on drug potential to counteract stress-induced deregulation of ahNG and depressive-like behavior

    The neurogenic effects of exogenous neuropeptide Y: early molecular events and long-lasting effects in the hippocampus of trimethyltin-treated rats.

    Get PDF
    Modulation of endogenous neurogenesis is regarded as a promising challenge in neuroprotection. In the rat model of hippocampal neurodegeneration obtained by Trimethyltin (TMT) administration (8 mg/kg), characterised by selective pyramidal cell loss, enhanced neurogenesis, seizures and cognitive impairment, we previously demonstrated a proliferative role of exogenous neuropeptide Y (NPY), on dentate progenitors in the early phases of neurodegeneration. To investigate the functional integration of newly-born neurons, here we studied in adult rats the long-term effects of intracerebroventricular administration of NPY (2 \ub5g/2 \ub5l, 4 days after TMT-treatment), which plays an adjuvant role in neurodegeneration and epilepsy. Our results indicate that 30 days after NPY administration the number of new neurons was still higher in TMT+NPY-treated rats than in control+saline group. As a functional correlate of the integration of new neurons into the hippocampal network, long-term potentiation recorded in Dentate Gyrus (DG) in the absence of GABAA receptor blockade was higher in the TMT+NPY-treated group than in all other groups. Furthermore, qPCR analysis of Kruppel-like factor 9, a transcription factor essential for late-phase maturation of neurons in the DG, and of the cyclin-dependent kinase 5, critically involved in the maturation and dendrite extension of newly-born neurons, revealed a significant up-regulation of both genes in TMT+NPY-treated rats compared with all other groups. To explore the early molecular events activated by NPY administration, the Sonic Hedgehog (Shh) signalling pathway, which participates in the maintenance of the neurogenic hippocampal niche, was evaluated by qPCR 1, 3 and 5 days after NPY-treatment. An early significant up-regulation of Shh expression was detected in TMT+NPY-treated rats compared with all other groups, associated with a modulation of downstream genes. Our data indicate that the neurogenic effect of NPY administration during TMT-induced neurodegeneration involves early Shh pathway activation and results in a functional integration of newly-generated neurons into the local circuit

    Salmeterol, a β2 adrenergic agonist, promotes adult hippocampal neurogenesis in a region-specific manner

    No full text
    Neurogenesis persists in the subgranular zone of the hippocampal formation in the adult mammalian brain. In this area, neural progenitor cells (NPCs) receive both permissive and instructive signals, including neurotransmitters, that allow them to generate adult-born neurons which can be functionally integrated in the preexisting circuit. Deregulation of adult hippocampal neurogenesis (ahNG) occurs in several neuropsychiatric and neurodegenerative diseases, including major depression, and represents a potential therapeutic target. Of interest, several studies suggested that, both in rodents and in humans, ahNG is increased by chronic administration of classical monoaminergic antidepressant drugs, suggesting that modulation of this process may participate to their therapeutic effects. Since the established observation that noradrenergic innervations from locus coeruleus make contact with NPC in the dentate gyrus, we investigated the role of beta adrenergic receptor (β-AR) on ahNG both in vitro and in vivo. Here we report that, in vitro, activation of β2-AR by norepinephrine and β2-AR agonists promotes the formation of NPC-derived mature neurons, without affecting NPC survival or differentiation toward glial lineages. Additionally, we show that a selective β2-AR agonist able to cross the blood-brain barrier, salmeterol, positively modulates hippocampal neuroplasticity when chronically administered in adult naïve mice. Indeed, salmeterol significantly increased number, maturation, and dendritic complexity of DCX+ neuroblasts. The increased number of DCX+ cells was not accompanied by a parallel increase in the percentage of BrdU+/DCX+ cells suggesting a potential prosurvival effect of the drug on neuroblasts. More importantly, compared to vehicle, salmeterol promoted ahNG, as demonstrated by an increase in the actual number of BrdU+/ NeuN+ cells and in the percentage of BrdU+/NeuN+ cells over the total number of newly generated cells. Interestingly, salmeterol proneurogenic effects were restricted to the ventral hippocampus, an area related to emotional behavior and mood regulation. Since salmeterol is commonly used for asthma therapy in the clinical setting, its novel pharmacological property deserves to be further exploited with a particular focus on drug potential to counteract stress-induced deregulation of ahNG and depressive-like behavior

    Adult Cellular Neuroadaptations Induced by Adolescent THC Exposure in Female Rats Are Rescued by Enhancing Anandamide Signaling

    No full text
    Background: In rodent models, chronic exposure to cannabis' psychoactive ingredient, Delta(9)-tetrahydrocannabinol, during adolescence leads to abnormal behavior in adulthood. In female rats, this maladaptive behavior is characterized by endophenotypes for depressive-like and psychotic-like disorders as well as cognitive deficits. We recently reported that most depressive-like behaviors triggered by adolescent Delta(9)-tetrahydrocannabinol exposure can be rescued by manipulating endocannabinoid signaling in adulthood with the anandamide-inactivating enzyme FAAH inhibitor, URB597. However, the molecular mechanisms underlying URB597's antidepressant-like properties remain to be established.Methods: Here we examined the impact of adult URB597 treatment on the cellular and functional neuroadaptations that occurred in the prefrontal cortex and dentate gyrus of the hippocampus upon Delta(9)-tetrahydrocannabinol during adolescence through biochemical, morphofunctional, and electrophysiological studies.Results: We found that the positive action of URB597 is associated with the rescue of Delta(9)-tetrahydrocannabinol-induced deficits in endocannabinoid-mediated signaling and synaptic plasticity in the prefrontal cortex and the recovery of functional neurogenesis in the dentate gyrus of the hippocampus. Moreover, the rescue property of URB597 on depressive-like behavior requires the activity of the CB1 cannabinoid receptor.Conclusions: By providing novel insights into the cellular and molecular mechanisms of URB597 at defined cortical and hippocampal circuits, our results highlight that positive modulation of endocannabinoid-signaling could be a strategy for treating mood alterations secondary to adolescent cannabis use
    corecore