12,440 research outputs found
An efficient prescription to find the eigenfunctions of point interactions Hamiltonians
A prescription invented a long time ago by Case and Danilov is used to get
the wave function of point interactions in two and three dimensions.Comment: 6 page
Two definitions of the electric polarizability of a bound system in relativistic quantum theory
For the electric polarizability of a bound system in relativistic quantum
theory, there are two definitions that have appeared in the literature. They
differ depending on whether or not the vacuum background is included in the
system. A recent confusion in this connection is clarified
Validity of Feynman's prescription of disregarding the Pauli principle in intermediate states
Regarding the Pauli principle in quantum field theory and in many-body
quantum mechanics, Feynman advocated that Pauli's exclusion principle can be
completely ignored in intermediate states of perturbation theory. He observed
that all virtual processes (of the same order) that violate the Pauli principle
cancel out. Feynman accordingly introduced a prescription, which is to
disregard the Pauli principle in all intermediate processes. This ingeneous
trick is of crucial importance in the Feynman diagram technique. We show,
however, an example in which Feynman's prescription fails. This casts doubts on
the general validity of Feynman's prescription
Discrete time piecewise affine models of genetic regulatory networks
We introduce simple models of genetic regulatory networks and we proceed to
the mathematical analysis of their dynamics. The models are discrete time
dynamical systems generated by piecewise affine contracting mappings whose
variables represent gene expression levels. When compared to other models of
regulatory networks, these models have an additional parameter which is
identified as quantifying interaction delays. In spite of their simplicity,
their dynamics presents a rich variety of behaviours. This phenomenology is not
limited to piecewise affine model but extends to smooth nonlinear discrete time
models of regulatory networks. In a first step, our analysis concerns general
properties of networks on arbitrary graphs (characterisation of the attractor,
symbolic dynamics, Lyapunov stability, structural stability, symmetries, etc).
In a second step, focus is made on simple circuits for which the attractor and
its changes with parameters are described. In the negative circuit of 2 genes,
a thorough study is presented which concern stable (quasi-)periodic
oscillations governed by rotations on the unit circle -- with a rotation number
depending continuously and monotonically on threshold parameters. These regular
oscillations exist in negative circuits with arbitrary number of genes where
they are most likely to be observed in genetic systems with non-negligible
delay effects.Comment: 34 page
Comment on ``Validity of Feynman's prescription of disregarding the Pauli principle in intermediate states''
In a recent paper Coutinho, Nogami and Tomio [Phys. Rev. A 59, 2624 (1999);
quant-ph/9812073] presented an example in which, they claim, Feynman's
prescription of disregarding the Pauli principle in intermediate states of
perturbation theory fails. We show that, contrary to their claim, Feynman's
prescription is consistent with the exact solution of their example.Comment: 1 pag
Si(111) strained layers on Ge(111): evidence for c(2x4) domains
The tensile strained Si(111) layers grown on top of Ge(111) substrates are
studied by combining scanning tunneling microscopy, low energy electron
diffraction and first-principles calculations. It is shown that the layers
exhibit c(2x4) domains, which are separated by domain walls along
directions. A model structure for the c(2x4) domains is proposed, which shows
low formation energy and good agreement with the experimental data. The results
of our calculations suggest that Ge atoms are likely to replace Si atoms with
dangling bonds on the surface (rest-atoms and adatoms), thus significantly
lowering the surface energy and inducing the formation of domain walls. The
experiments and calculations demonstrate that when surface strain changes from
compressive to tensile, the (111) reconstruction converts from
dimer-adatom-stacking fault-based to adatom-based structures
Many-body system with a four-parameter family of point interactions in one dimension
We consider a four-parameter family of point interactions in one dimension.
This family is a generalization of the usual -function potential. We
examine a system consisting of many particles of equal masses that are
interacting pairwise through such a generalized point interaction. We follow
McGuire who obtained exact solutions for the system when the interaction is the
-function potential. We find exact bound states with the four-parameter
family. For the scattering problem, however, we have not been so successful.
This is because, as we point out, the condition of no diffraction that is
crucial in McGuire's method is not satisfied except when the four-parameter
family is essentially reduced to the -function potential.Comment: 8 pages, 4 figure
- …