12,440 research outputs found

    An efficient prescription to find the eigenfunctions of point interactions Hamiltonians

    Full text link
    A prescription invented a long time ago by Case and Danilov is used to get the wave function of point interactions in two and three dimensions.Comment: 6 page

    Two definitions of the electric polarizability of a bound system in relativistic quantum theory

    Get PDF
    For the electric polarizability of a bound system in relativistic quantum theory, there are two definitions that have appeared in the literature. They differ depending on whether or not the vacuum background is included in the system. A recent confusion in this connection is clarified

    Validity of Feynman's prescription of disregarding the Pauli principle in intermediate states

    Get PDF
    Regarding the Pauli principle in quantum field theory and in many-body quantum mechanics, Feynman advocated that Pauli's exclusion principle can be completely ignored in intermediate states of perturbation theory. He observed that all virtual processes (of the same order) that violate the Pauli principle cancel out. Feynman accordingly introduced a prescription, which is to disregard the Pauli principle in all intermediate processes. This ingeneous trick is of crucial importance in the Feynman diagram technique. We show, however, an example in which Feynman's prescription fails. This casts doubts on the general validity of Feynman's prescription

    Discrete time piecewise affine models of genetic regulatory networks

    Full text link
    We introduce simple models of genetic regulatory networks and we proceed to the mathematical analysis of their dynamics. The models are discrete time dynamical systems generated by piecewise affine contracting mappings whose variables represent gene expression levels. When compared to other models of regulatory networks, these models have an additional parameter which is identified as quantifying interaction delays. In spite of their simplicity, their dynamics presents a rich variety of behaviours. This phenomenology is not limited to piecewise affine model but extends to smooth nonlinear discrete time models of regulatory networks. In a first step, our analysis concerns general properties of networks on arbitrary graphs (characterisation of the attractor, symbolic dynamics, Lyapunov stability, structural stability, symmetries, etc). In a second step, focus is made on simple circuits for which the attractor and its changes with parameters are described. In the negative circuit of 2 genes, a thorough study is presented which concern stable (quasi-)periodic oscillations governed by rotations on the unit circle -- with a rotation number depending continuously and monotonically on threshold parameters. These regular oscillations exist in negative circuits with arbitrary number of genes where they are most likely to be observed in genetic systems with non-negligible delay effects.Comment: 34 page

    Comment on ``Validity of Feynman's prescription of disregarding the Pauli principle in intermediate states''

    Get PDF
    In a recent paper Coutinho, Nogami and Tomio [Phys. Rev. A 59, 2624 (1999); quant-ph/9812073] presented an example in which, they claim, Feynman's prescription of disregarding the Pauli principle in intermediate states of perturbation theory fails. We show that, contrary to their claim, Feynman's prescription is consistent with the exact solution of their example.Comment: 1 pag

    Si(111) strained layers on Ge(111): evidence for c(2x4) domains

    Full text link
    The tensile strained Si(111) layers grown on top of Ge(111) substrates are studied by combining scanning tunneling microscopy, low energy electron diffraction and first-principles calculations. It is shown that the layers exhibit c(2x4) domains, which are separated by domain walls along directions. A model structure for the c(2x4) domains is proposed, which shows low formation energy and good agreement with the experimental data. The results of our calculations suggest that Ge atoms are likely to replace Si atoms with dangling bonds on the surface (rest-atoms and adatoms), thus significantly lowering the surface energy and inducing the formation of domain walls. The experiments and calculations demonstrate that when surface strain changes from compressive to tensile, the (111) reconstruction converts from dimer-adatom-stacking fault-based to adatom-based structures

    Many-body system with a four-parameter family of point interactions in one dimension

    Get PDF
    We consider a four-parameter family of point interactions in one dimension. This family is a generalization of the usual δ\delta-function potential. We examine a system consisting of many particles of equal masses that are interacting pairwise through such a generalized point interaction. We follow McGuire who obtained exact solutions for the system when the interaction is the δ\delta-function potential. We find exact bound states with the four-parameter family. For the scattering problem, however, we have not been so successful. This is because, as we point out, the condition of no diffraction that is crucial in McGuire's method is not satisfied except when the four-parameter family is essentially reduced to the δ\delta-function potential.Comment: 8 pages, 4 figure
    corecore