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Computational paralinguistics (CP) is a relatively new area of research that provides new 
methods, tools, and techniques to automatically recognize the states, traits, and qualities 
embedded in the nonsemantic aspects of human speech (1). In recent years, CP has reached a 
level of maturity that has permitted the development of a myriad of applications in everyday life, 
such as the automatic estimation of a speaker’s age, gender, height, emotional state, cognitive 
load, personality traits, likability, intelligibility, and medical condition (2). Here, we provide an 
overview of one particular application of CP that offers new solutions for health care—the 
recognition of physiological parameters (biosignals) from the voice alone.  
 
Unintrusive and pervasive monitoring 

Currently, there are a variety of portable medical devices enabling patients to actively 
monitor the relevant factors contributing to their diagnosis and treatments. These devices are 
particularly important when frequent monitoring (daily or several times a day) is required for the 
adequate treatment and detection of symptoms, especially for patients with limited mobility and 
difficulties accessing medical facilities. Further, these technologies help address the shortage of 
qualified medical staff needed to adequately monitor patients, which can lead to delays in 
obtaining appropriate feedback and treatment.  

The technologies currently available include those that measure heart rate, blood volume 
pressure, body temperature, respiration rate, and other physiological parameters. Such devices 
can be quite expensive and complicated for older patients and those with limited mobility, and 
often inconvenient for everyday use. Ideally, monitoring biosignals should be unobtrusive, not 
require additional electronic devices, and require minimal effort from the patient. Most 
importantly, monitoring should be easy to perform in emergency situations.  

Computers or mobile phones are thus an obvious choice due to their abundance and their 
computational power, which is sufficient to acquire and analyze biosignals (3–5). If such devices 
are to be used, the signal being measured must be one that can be recorded without the need for 
additional equipment. Audio and video signals fit these criteria, as both have been previously 
used to estimate a variety of biosignals. For instance, video analysis of the skin can detect subtle 
color shifts triggered by physiological changes (such as cardiac rhythm or blood flow) (6–8). In 
the case of the human voice, physiological changes are detectable through vocalizations because 
both the larynx (where the vocal cords are located) and the pharynx (above the larynx) are 
controlled by the autonomic nervous system, which regulates blood pressure, heart rate, and 
perspiration (9–12).  

Voice-based biosignal estimation presents a major advantage over video-based sensing, 
because audio acquisition is less limiting than video in that it does not need to be directed toward 
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or be in contact with a patient’s skin, and it can be used in a wider range of conditions (for 
instance, in the dark when video cannot be captured). This is of particular relevance in crisis 
situations, when additional sensors or the ideal conditions for adequate video analysis are not 
available. In such cases, by simply asking for medical assistance, vital information about the 
patient could be automatically collected and used to inform diagnosis and treatment.  
Voice-based physiological monitoring 

In a recent and comprehensive attempt to estimate biosignals from the voice alone (13), 
we evaluated the estimation of two biosignals—heart rate (HR) and skin conductance (SC)—and 
the classification of pulse level (high pulse/low pulse; HP/LP) using acoustic features extracted 
from audio recordings. We designed an empirical study to collect subjects’ HR and SC from 19 
subjects (4 female; 15 male). In addition, we obtained audio recordings of breathing sounds and 
from the repeated pronunciation of the sustained vowel “a.” The recordings were collected in 
two pulse-level states: a “neutral” state (characterized by a low pulse), and a high-pulse state, 
which was induced by asking subjects to run up and down six flights of stairs (three stories) and 
down a hallway immediately prior to the recording. In order to evaluate the influence of the 
sound recording conditions, audio recordings were obtained with two different devices: a high-
quality sound recorder (“ambient”) and a common, commercially available headset (“headset”). 
The full database consists of 1,420 audio recordings (and concomitant HR and SC recordings).  

The audio recordings were analyzed using the openSMILE (Speech and Music 
Interpretation by Large Space Extraction) software toolkit (14), which was used to extract a large 
set of acoustic descriptors. These descriptors included 4,368 acoustic features comprising a 
variety of energy-, spectral-, and voice-related information, which was used to develop 
computational models that predict SC, HR, and pulse level using state-of-the-art machine 
learning regression (to determine the exact value of SC and HR) and classification techniques (to 
determine pulse level, either high or low). These computational models were created for 
individual speakers (IS) and multiple speakers (MS), i.e., using the recordings from all speakers 
to generate a model that can be applicable to any speaker rather than a specific speaker. The 
models’ performances in the regression tasks were estimated using Pearson’s linear correlation 
coefficient (CC) and the mean absolute error (MAE). For the classification of pulse levels, the 
performance was estimated using the unweighted accuracy [UA, i.e., the unweighted arithmetic 
mean of the number of correctly identified pulse levels in each condition (HP or LP)]. A 
summary of the results is shown in Table 1.  

Next, we evaluated whether voice recordings could be used to identify pulse level and 
estimate SC and HR values. The results demonstrated that one’s pulse level could be correctly 
identified with an accuracy as high as 84.1 percent or the IS model (ambient microphone audio 
recordings of breathing). Furthermore, HR and SC regression analysis showed that the best linear 
correlation coefficients were 0.861 [MAE of 8.1 beats per minute (BPM); IS model using the 
sustained vowels audio recordings obtained with an ambient microphone] and 0.978 [MAE of 
84.4 micromhos (μMhO); IS model using the sustained vowels audio recordings obtained with a 
headset microphone)], respectively. We drew three main conclusions from the results. First, 
common microphones are a viable option for estimating biosignals from the voice, as the 
performance was comparable for both microphone types. Secondly, both types of recording 
conditions—sustained vowels and breathing sounds—led to similar classifications of the 
subjects’ pulse level, although the use of sustained vowels was slightly better than breathing 
sounds for the regression experiments (13). In another study, we evaluated which acoustic 



features would be best suited for estimating biosignals. The results showed that with an 
optimized set of 150 acoustic features, a subject’s pulse level could be accurately determined, 
with a UA of 91.4 percent and correlation coefficients of 0.876 for SC and 0.838 for HR (but 
only when using 100 acoustic features for the analysis, not 150) (15).  

The dataset used in our work—the Munich BioVoice corpus (MBC)—has been made 
publicly available (15) and was used in the Interspeech 2014 Computational Paralinguistics 
Challenge (2). Competing teams were asked to classify HP/LP based on freely chosen features 
extracted from voice recordings of text that was read after exercise or under resting conditions. 
The winning team achieved an accuracy of 75.3 percent (16). 

 
Conclusions and perspectives  

Taken together, our studies have shown that audio recordings of a person’s breathing, 
pronunciation of sustained vowels, and reading of text can be used to predict biosignals. 
Gathering such information from voice recordings has a lot of potential use for technologies that 
require noninvasive, passive collection methods. For instance, a mobile phone could be used to 
continuously or periodically record a subject’s voice (with or without speech) without the need 
for user intervention. This would require little or no effort from the user and be well suited to 
patients with limited mobility or in emergency situations when user intervention is not possible.  

However, the use of audio recordings to estimate biosignals is still in its infancy and has 
a lot of room for improvement. For example, the data from this technology is still less accurate 
than what can be obtained by using dedicated medical equipment, and more research is needed to 
improve its quality. Furthermore, the technology would gain from research on which acoustic 
and vocal features are optimal to use, from exploration of more powerful modeling paradigms, 
from the calibration of models based on individual differences in physiological activity, and from 
the acquisition of larger data sets for refining speaker-independent models. Finally, this type of 
research would benefit from more attention from the speech community and from the application 
of state-of-the-art machine learning techniques. 

In summary, our studies have found that audio-based recognition has the potential to be 
used as a software application on mobile phones and computers for remote monitoring of HR 
and SC. One advantage of using such audio recordings is that analyses could be performed in an 
atemporal fashion, e.g., using past recordings to investigate a patient’s history and their 
condition’s evolution over the period that preceded diagnosis and treatment. If the technology is 
further improved, it could be used for passive, noncontact monitoring of patients, which would 
require minimum attendance by its user and improve the quality of life for many people.  
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Table 1. Results for the automatic regression of heart rate (HR), skin conductance (SC), and 
classification of pulse level (HP: high pulse; LP: low pulse). IS: individual speakers; MS: 
multiple speakers; UA: unweighted accuracy; CC: Pearson’s linear correlation coefficient; MAE: 
mean absolute error. Table adapted from (13). 
 

Recording 
condition 

Recording 
device Model type 

Pulse level 
(HP/LP) Heart Rate (HR) Skin Conductance (SC) 

UA 
(%) 

CC                MAE 
(BPM) 

CC                     MAE 
(μMhO) 

Sustained 
vowels 

Headset IS 83.1 0.809 8.4 0.978 84.4 
MS 79.6 0.770 10.6 0.891 265.3 

Ambient IS 82.7 0.861 8.1 0.960 88.2 
MS 76.0 0.574 11.7 0.633 311.2 

Breathing 
periods 

Headset IS 84.1 0.722 10.7 0.908 153.7 
MS 78.6 0.629 13.1 0.632 469.7 

Ambient IS 81.9 0.718 10.6 0.905 165.3 
MS 72.9 0.521 14.8 0.483 570.8 

 


