3,476 research outputs found

    Matter-wave grating distinguishing conservative and dissipative interactions

    Get PDF
    We propose an optical grating for matter waves that separates molecules depending on whether their interaction with the light is conservative or dissipative. Potential applications include fundamental tests of quantum mechanics, measurement of molecular properties and the ability to selectively prepare matter waves with different internal temperatures

    Prejudicial search and backprop

    Get PDF
    Journal ArticleThis paper introduces the combination of backward error propagation and prejudicial search. Prejudicial search is a method, which like simulated annealing, guarantees convergence to a global minimum as time approaches infinity. Unlike simulated annealing, its application is more flexible because it can be combined with other search methods. This method is applied to the exclusive-or problem. When prejudicial search is combined with backward error propagation, the resulting sum of mean squared error at each time step is between 10 and 70 percent (depending on t h e cooling schedule) of the normal backward error propagation error

    Generality Vs. speed of convergence in the cart-pole balancer

    Get PDF
    technical reportThis paper compares the speed of convergence to an optimal solution of four controllers for the problem of balancing a pole on a cart. We demonstrate that controllers whose design is tailored specifically to the cart-pole problem (i.e. less general) converge more rapidly to an optimal solution. However, the architectures and learning algorithms for those networks may not perform well for more general tasks. The four controllers, ordered from the least general to the most general, are the Perceptron, the Associative Search Element [1], Jordan's approach [3], and Prejudicial Search applied to the ASE architecture. Two of the above neural networks, the Perceptron and Prejudicial Search [2] are new methods for solving this problem. The perceptron is a simple two input neuron (summing unit) with 2 weights and a step function output. The Prejudicial Search is a method for biasing the search of possible solutions. It guarantees convergence, but allows the search to be biased by heuristics or information about the problem. In this paper, it is combined with the ASE architecture. However, the Prejudicial Search technique can be combined with any architecture and learning algorithm, extending their ability to handle a more general class of problems

    Glacial and Postglacial History of the White Cloud Peaks-Boulder Mountains, Idaho, U.S.A.

    Get PDF
    Glacial and glaciofluvial deposits are mapped and differentiated to develop new local, relative-age (RD) stratigraphies for the North Fork of the Big Lost River, Slate Creek and Pole Creek drainages in the White Cloud Peaks and Boulder Mountains, Idaho. This stratigraphic model expands the areal extent of the "Idaho glacial model". Volcanic ash samples collected from the study area are petrographically characterized and correlated, on the basis of mineralogy and glass geochemistry, to reference samples of identified Cascade Range tephras. Four distinct tephras are recognized including; Mount St. Helens-Set S (13,600-13,300 yr BP), Glacier Peak-Set B (11,250 yr BP), Mount Mazama (6600 yr BP) and Mount St. Helens-Set Ye (4350 yr BP). A core of lake sediments containing two tephra units was obtained from a site called "Pole Creek kettle". Pollen and sediment analyses indicate three intervals of late Pleistocene and Holocene climatic change. Cool and wet climatic conditions prevailed in the region shortly before and immediately following the deposition of the Glacier Peak-Set B ash (11,250 yr BP). Climatic warming occurred from approximately 10,500 to 6600 yr BP after which warm, dry conditions prevailed. Sediment accumulation in the kettle ceased by 4350 yr BP. The presence of Glacier Peak-Set B tephra in the base of the Pole Creek kettle core provides a minimum age of 11,250 yr BP for the retreat of valley glaciers from their Late Wisconsinan maximum position. A radiocarbon date of 8450 + 85 yr BP (SI-5181), and the presence of Mount Mazama ash (6600 yr BP) up-core support the Glacier Peak-Set B identification.La cartographie et l'identification des dépôts glaciaires et fluvioglaciaires a permis d'établir la stratigraphie locale des bassins du North Fork de la Big Lost River, du Pole Creek et du Slate Creek. Le modèle stratigraphique établi augmente la superficie déjà couverte par le modèle glaciaire de l'Idaho. Les échantillons de cendre volcanique prélevés ont été identifiés sur le plan pétrographique et mis en corrélation avec des tephras témoins provenant du Cascade Range, en se fondant sur la composition minérale et sur la géochimie du verre. On distingue quatre types de tephras: ceux de la série S du mont St. Helen's (13 600-13 300 BP), ceux de la série B du Glacier Peak (11 250 BP), ceux de la série S du mont St. Helen's (4350 BP) et ceux du mont Mazama (6600 BP). Une carotte de sédiments lacustres prélevée dans le kettle Pole Creek renferme deux tephras. L'analyse du pollen et des sédiments révèle l'existence de trois grands changements climatiques au Pleistocene supérieur et à l'Holocène: un climat frais et humide un peu avant et immédiatement après la mise en place des cendres de la série B du Glacier Peak (11 250 BP); une période de réchauffement (10 500-6600 BP); un climat chaud et sec. L'accumulation de sédiments dans le kettle prit fin vers 4350 BP. La présence du tephra de la série B du Glacier Peak à la base de la carotte donne la date minimale du retrait des glaciers de vallée (11 250 BP) à partir de leur emplacement au Wisconsinien supérieur. La date de 8450 + 85 ans BP et la présence, dans la partie supérieure de la carotte, de cendres provenant du mont Mazama (6600 BP) confirment l'identification de la série B du Glacier Peak.Idaho, U.S.A. Glaziale und glaziofluviale Ablagerungen wurden kartographiert und identifiziert, um eine neue, lokale, relative Alters-Stratigraphie der North Fork des Big Lost River, des Slate Creek und des Pole Creek in den White Cloud Peaks und Boulder Mountains, Idaho, zu en-twickeln. Proben vulkanischer Asche, die im untersuchten Gebiet gesammelt wurden, werden petrographisch bestimmt und auf der Basis von mineralogischer Zusammensetzung und Geochemie des Glases in Wechselbe-ziehung zu Referenz-Belegen von identifi-zierten Tephras von den Cascade Ranges gesetzt. Es werden vier verschiedene Tephras identifiziert: von der Série S des Mount St. Helens (13 600-13 300 v.u.Z.), von der Série B des Glacier Peak (11 250 v.u.Z.), von der Série Ye des Mount Mazama (6600 v.u.Z.) und des Mount St. Helens (4350 v.u.z.). Eine Probe von See-Sedimenten, der vom Pole Creek Kettle gewonnen wurde, enthâlt zwei Tephra-Einheiten. Die Pollen- und Sediment-Analysen lassen drei Intervalle klimatischen Wechsels im spâten Pleistozân und im Ho-lozan erkennen. Kalte und feuchte Klimatische Bedingungen herrschten in diesem Gebiet vor, kurz vor und unmittelbar nach der Ablagerung der Asche der Série B des Glacier Peak (11 250 v.u.Z.). Eine klimatische Erwàrmung trat zwischen ungefàhr 10 500 bis 6600 v.u.Z. auf, nach welcher warme, trockene Bedingungen vorherrschten. Die Sediment-An-hàufung in dem Kettel endete ungefàhr um 4350 v.u.Z. Das Vorkommen von Tephra der Série B des Glacier Peak in der Basis der Probe des Pole Creek Kettle ergibt ein Minimum-Alter von 11 250 v.u.Z. fur den Ruckzug der Gletscher des TaIs von ihrer maximalen Position im spâten Wisconsin. Ein Radiokar-bon-Datum von 8450 + 85 v.u.Z. (SI-5181) und das Vorkommen von Asche des Mount Mazama (6600 v.u.Z.) im oberen Teil der Probe stutzen die Identifizierung der Série B des Glacier Peak
    • …
    corecore