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Abstract
Wehavemeasured the dampedmotion of a trapped Bose–Einstein condensate, oscillatingwith
respect to a thermal cloud. The cigar-shaped trapping potential provides enough transverse
confinement that the dynamics of the system are intermediate between three-dimensional and one-
dimensional.We find that the scaling of the damping rate with temperature is consistent with Landau
theory, but that the damping rate for axial oscillations at a given temperature is consistently smaller
than expected for a three-dimensional gas.We attribute this to the suppressed density of states for
low-energy transverse excitations (essential excitations for axial Landau damping), which results from
the quantization of the radialmotion.

1. Introduction

Trapped, ultracold gases offer a versatile way to investigate quantummany-body physics.Well-isolated from
their surroundings, they can be controlled to cover awide parameter space, giving access to regimes beyond the
reach of other condensedmatter experiments [1]. Confinement reduces the dimensionality of a gas when the
atoms have insufficient energy to reach excited quantum levels. For example, pancake-shaped traps can produce
a two-dimensional (2D) gas, while a cigar-shaped trap can confine it to one-dimension (1D) [2].While the static
properties of atomic Bose–Einstein condensates (BEC) are generally well understood [3] the dynamical
behaviour remains an active area of study [4]. In the early days of atomic BEC, oscillations of the shapewere
studied, primarily to establish the superfluidity of the condensate, and it was noticed that these oscillationswere
damped [5, 6] at a rate that depended strongly on the temperature [7]. An explanation for this was offered by
Landau damping [8, 9], inwhich a low-energy excitation of the condensate is dissipated into the thermal cloud
by scattering phonons from lower to higher energy. Fedichev et al [10, 11] extended this theory to the case of a
trapped gas and showed that the damping is determined predominantly by the condensate boundary region,
resulting in a different damping rate from that of a spatially homogeneous gas. This theory found reasonable
agreementwith [7], and similar agreementwas foundwith themeasured damping rate of the scissorsmode of
oscillation [12].

Subsequently, Stamper-Kurn et al [13] excited a cigar-shaped condensate tomove rigidly along its length,
out of phase with its thermal component. They saw that this second-soundmotion [14]was damped, and noted
that collisions neglected in the Landau theorymight play a role because the hydrodynamicity—the thermal
cloud collision rate divided by the oscillation frequency—was not small. The damping of thismodewas also
noted in [15] andwas studied extensively byMeppelink et al [16]. They found qualitative agreement with [10] at
low values of hydrodynamicity, with a strongly growing discrepancy at higher values, demonstrating the
breakdownof the Landau theory at high density.

Oscillations of long, thin atomic BECs in the 1D regime [17] have very different behaviour, with a very low
predicted damping rate [18, 19] that is too small tomeasure [20], unless corrugation is added to the trapping
potential [21]. This raises the question of how the damping evolves from the 3D rate, through the crossover
regimewhere no analytic theory currently exists, to a negligible rate in 1D.Oscillation frequencies have been
measured in this crossover regime [22, 23], but not the damping rate. In this article, wemeasure the damping
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rate for dipole oscillations of a condensate in the crossover regime as a function of temperature, and compare
our results withmeasurements of [16] and the theory of [10, 11].Wefind that the oscillations in our experiment
persist for longer than expected for a 3D gas and propose that this is the consequence of suppressed radial
excitations due to the tight transverse confinement of the atoms.

2. Condensate oscillations in a thermal background

Weproduce highly elongated,finite temperature condensates [24]with the apparatus illustrated infigure 1. A
magneto-optical trap (MOT) cools and collects 87Rb atoms a fewmillimetres away from the surface of an atom
chip [25]. TheMOT is then turned off, and the atoms are transferred to a Ioffe–Pritchard trap approximately
110 μmfrom the surface of the chip [26, 27]. Themagnetic trapping field is produced by current in a Z-shaped
wire on the chip, with its central section along z, together with an external biasfield along x. The highmagnetic
field gradient near the centre of the Z-wire gives tight radial (x, y) confinement with a harmonic oscillation
frequency ofωρ/2π= 1.4 kHz. Axial (z) confinement is produced by the currents in the ends of the Z-wire and in
the endwires (figure 1), giving an axial frequency of 3 Hz.

We cool the trapped gas further by forced evaporation, using an rf field toflip the spins of themost energetic
atoms so that they are ejected from the trap [28]. By sweeping the escape energy down to a few kilohertz above
the bottomof the trap, we produce an almost pure BECof approximately 104 atoms at a temperature of
∼150 nK.Minor defects in the chipwire cause the current tomeander slightly from side to side, producing small
undulations of the trapping potential thatmake localminima along the z axis up to amicrokelvin in depth
[29, 30].We adjust the centre of the axial trap so that the BEC forms in one of these, which is harmonic over a
small region, with a characteristic frequency ofωz/2π= 10 Hz. The condensed atoms are confined to that
region, while the higher-energy atoms in the thermal component of the gas explore a larger axial range, and a
potential which is anharmonic along the axis of the trap. The small variations in themagnetic field along zwhich
cause this anharmonicity have a negligible influence on the transverse confinement. This remains harmonic
with frequencyωρ for both components of the gas, due to the highmagnetic field gradients in the x–y plane.

When the rffield is turned off, the atomswarmup at approximately 50 nK s−1, presumably due to noise in
the apparatus. To counteract this, we leave the rffield on, so that atoms above some fixed energy are able to leave
the trap.Over a fewmilliseconds the cloud comes to equilibrium at the temperaturewhere the heating is
balanced by the evaporative cooling.We select a desired temperature in the range 150−310 nKby adjusting the
rf frequency. The temperature remainsfixed over the next 500ms, while the number of trapped atoms decreases,
typically by a few percent.

Our aim is to observe the oscillation of condensed atomsmoving through the thermal cloud in order to
determine the damping rate as the system equilibrates. To resonantly excite axial condensate oscillations, we
drive an oscillating current in one of the endwires at 10 Hz for two periods. After this time, the condensate’s
centre ofmass is left oscillatingwith an initial amplitude of∼12 μm.The thermal atoms are largely unaffected

Figure 1.Diagram of the apparatus. Cold 87Rb atoms are delivered from an LVIS source [31] to a reflection-magneto-optical trap
formed on an atom chip. The atoms are passed to a long, thinmagnetic trap formed by a current in the Z-wire together with a uniform
bias field along x. After evaporative cooling, these form aBEC (dark blue). A brief ac current in the endwire excites the condensate to
oscillate along z, as indicated by the green arrows. After some time, the cloud is released and allowed to fall for 2 ms under gravity along
y, before being imaged along x by absorption of a laser beam, shown in red.
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because they explore the region outside the local potentialminimumand are therefore not resonant with this
drive.

We allow the condensate to oscillate through the thermal background for a time t, before switching off the
trap and imaging the cloud to determine the condensate’s centre ofmass. By increasing t in 12.5 ms steps over a
total of 400 ms, we build up a data set of the damped oscillation.We repeat this process for clouds at different
temperatures whichwe influence by setting the frequency of the rf field as described above. Thus, we observe
how the systemdamps as a function of temperature.

3.Measuring the temperature, condensate centre ofmass, and damping rate

Wedetermine the temperature of the gas, and centre ofmass of the condensate from an absorption image. To
image the atom cloud,we release it from the trap (gravity is up in figure 1), wait for 2ms, illuminate it with
resonant laser light and view the absorption along x using a CCDcamera. This image is then integrated over y to

obtain the one-dimensional axial number density profile of the cloud, n z x y n rd d .( ) ( )ò= The data points in

figure 2(a) show axial density profilesmeasured at three different temperatures. At the lowest temperature (red
dots), the atoms are nearly all in the condensate, with very little signal in the broad thermal background, whereas
the profile at the highest temperature (green triangles) has a clearly visible thermal population on either side of
the cloud.

Our analysis of the cloud profile builds on themethod of [32]. The trapping potential is well described by

U m V zr
1

2
,2 2( ) ( )w r= +r where ρ is the radial displacement, andV(z) is the potential on axis, including the

irregularity caused by themeandering current.We determineV(z) from the axial density distribution of cold,
non-condensed clouds as described in [33]. KnowingU(r), we estimate the number density profile of the
condensate, nc(r), using the Thomas–Fermi approximation. The profile of the thermal component is calculated
by integrating the Bose–Einstein distribution over the effective potential gn Ur r2 ,c ( ) ( )+ where the first term is
themean-field energy of thermal atoms inside the condensate. The cloud is then allowed to evolve freely for 2 ms
to account for the period of free fall (thoughwefind that thismakes no significant difference to the axial profile).
Wefit this theoretical cloud to themeasured density profile n(z) in order to determine the temperature, the
position of the condensate, and the peak condensate number density nc(0).We note that the Thomas–Fermi
approximation is not well satisfied in our 3D/1D condensates, but wefind from simulations1 that thismethod
still yields accurate temperatures, while the peak condensate density is underestimated, typically by 10%. These
fits, shown infigure 2(a) as solid lines, are in excellent agreementwith the cloudswe observe. For the three clouds

Figure 2.Density profiles of ultracold atom clouds and oscillations of the condensate. (a)Axial columndensity profilesmeasured at
three temperatures. Red dots: 155(3)nK. Blue squares: 251(3)nK.Green triangles: 305(3)nK. Solid lines:fits using theory described in
the text, which takes into account the irregular potential. Dotted lines: profiles of the thermal component of the cloud, determined by
the samefit to theory. (b)–(d)Condensate oscillations for the same three temperatures. Points show the centre ofmass of the
condensed component after a period of free oscillation. Lines show the fits to the damped sinusoid in (1). Thesefits give (b)
γ= 2.0(6)s−1 at 155 nK. (c) γ= 3.8(5)s−1 at 251 nK. (d) γ= 5.7(1.2)s−1 at 305 nK.

1
Apublication is in preparation.
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that are plotted infigure 2(a), we determined the temperatures 155(3), 251(3) and 305(3)nK. The dotted lines
show the thermal cloud density within the condensed regions.

In our experiments, the temperature fluctuates by less than 10 nK fromone realisation to the next—mainly
because offluctuations in the initial number ofmagnetically trapped atoms—and drifts by less than±20 nK
over an hour. The position of the BEC is very stable, fluctuating from shot to shot by less than 1 μm,whichwe
associate withmechanical instability of the camera andmirrormounts. It does not drift significantly over
an hour.

Figures 2(b)–(d) showplots of the condensate centre ofmass oscillations wemeasure at each of the three
temperatures used infigure 2(a). It takes approximately 30 min to collect the data points for one plot.We have
analysed 33 such time sequences, covering a range of temperatures from150 nKup to 310 nK. In each case, the
motion is well described by the exponentially damped sinusoid

z t A t Ce sin , 1t( ) ( ) ( )w f= + +g-

whereA, γ,ω,f andC arefit parameters. ParametersA,f andC are independent of temperature, andω increases
only slightly (by 10%) over this range of temperatures. By contrast, γdepends significantly on temperature,
increasing by a factor of three.

4. Results and discussion

Infigure 3we plot the damping rate γ as a function of the temperature, each point being the result offitting one
oscillation curve. The temperature assigned to one point is themean of the∼30 temperaturesmeasured in that
curve, and this has a standard error smaller than the symbols in the plot. A vertical error bar indicates the 1σ
uncertainty in γ for eachfit.We note that the dissipated energy of the oscillation has no significant influence on
the temperature, because it corresponds to a negligible rise of∼2 nK.

Damping ratesmeasured in 3DBECoscillation experiments have generally been consistent with the Landau
damping theory [5–7, 10–12, 16]. For a 3D trapped cloudmaking small oscillations at a frequencyω close to the
trap frequency, this theory gives the damping rate as (see equation (18) of [10])

A
k T

g n
a

0
. 2B

c

3 2

( )
( )wG =n n

HereAν is a numerical coefficient that depends onwhich collectivemode ν is excited, a is the s-wave scattering
length, nc(0) is the peak number density of the condensate and g a m4 2p= is the usual nonlinear coupling
parameter (theμ of [10] is the same as our gnc(0)). At each temperature ourmeasurements give values for the
number density and oscillation frequency, fromwhichwe construct empirical functions n T0;c ( ) andω(T).
Using these functions, we fit (2) to our data withAν as the only free parameter. The result isAν= 3.53(15). The
solid line infigure 3 shows this best fit, with the shaded region covering the standard deviation. This theory
describes our data well, giving a reducedχ2 of 0.90.

Themeasurements ofMeppelink et al in [16] involve the samemode as our experiment, but the comparison
of their damping at low hydrodynamicity with (2) yields a coefficientAν= 7 [16, 34], which is double the value

Figure 3.Damping ratemeasured as a function of temperature for the oscillation of our highly elongated BEC. Each point is derived by
fitting the oscillation of∼30 cloud images to (1). Vertical error bars show the 1σuncertainty in γ. Horizontal error bars are smaller
than the symbol. Solid line: a least squares fit of (2) to our data givesAν= 3.53(15). Shading indicates the standard error from thefit.
Dashed line: damping rate given by (2) takingAν= 7, as observedwith the 3D condensate of [16, 34].
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that wemeasure2. That raises the question—what is the difference? The condensate aspect ratioωρ /ωz in our
experiment is between 2 and 10 times larger than in [16], but this does not affect the 3DLandau damping
coefficient because the integral that givesAν [10] is independent of the aspect ratio. Another difference is the
value of kBT/μ, which is;3 for the low-hydrodynamicity data of [16] but ranges in our experiment from1.2 to
3.9. Figure 4 plotsAν against kBT/μ for each of our data points taken separately and for the lowhydrodynamicity
data of [16]. TheseAν values are obtained by comparing the damping rate for each data point with the
correspondingΓν of (2). This graph shows that theT m dependence of Landau theory is indeed the
dependence observed in our experiment, and it confirms in a different way that ourAν is half that of [16].

The essential difference between these two experiments is in the dimensionality of the trapped gas. In [16]
the chemical potential and kBTwere at least 28 and 65 times higher than the radial excitation energy respectively,
placing their cloudsfirmly in the 3D regime. By contrast, 2( )m wr  and k T2.3 4.6B ( )w< <r for our
clouds, placing them in the crossover regime between 3D and 1D. The temperature dependence of our result
indicates that the same Landau damping idea still applies, even in this crossover regime, but the density of states,
which enters through the use of Fermi’s golden rule to obtain (2), should bemodified to account for the
quantization of the radial excitations [24]. Physically, the thermal excitations in this case aremore likely to be
along z, inwhich case they cannot contribute to the damping, andAν is correspondingly reduced. The reduction
inAν is likely to beweaker at the higher temperatures but we do not have the statistical resolution to see that in
figure 3.

TheUtrecht experiment [16]measured the damping over awide range of hydrodynamicity. Following in the
spirit of [16], the red squares infigure 5 plot the ratio of theirmeasured damping rates γ to theΓν of (2), with
Aν= 7 [34], plotted versus hydrodynamicity. At low hydrodynamicity, the ratio approaches 1 in their data, and
0.5 in our data (blue circles), as discussed above. Further, theUtrecht data shows an increase in this ratio as the
hydrodynamicity increases, indicating that collisional processes, not incorporated in themodel of (2), play an
important role in damping this dipolemode. Figure 5 shows that such an increase does not occur in our case.We
suggest that this too is a consequence of the discrete radial excitation spectrum, which although broadened at
higher collision rates, remains discrete far above a hydrodynamicity offive and therefore suppresses the ability of
thermal–thermal collisions to contribute to the damping.

Following [16], we have taken the hydrodynamicity infigure 5 to be n v ,zth rel s wá ñ where
n N m k T4zth th

3 2 2
B

3 2( )w w p= r is the average thermal atomnumber density experienced by thermal atoms in

the harmonic trap, according to theMaxwell–Boltzmann distribution. The quantity v k T m4rel B
1 2[ ( )]pá ñ = is

themean relative speed between thermal atoms, andσ= 8π a2 is the s-wave scattering cross-section. In future, it
would be better to derive the thermal density from the Bose–Einstein distribution in the harmonic trap, which

fixes themean density at mk T h0.55
3

2
2 ,B

3 2 3( )⎜ ⎟
⎛
⎝

⎞
⎠z p / ζ being theReimann zeta function. Thismakes no

difference to our conclusions here, butwill be important for any future quantitative study of the corrections to
Landau damping.

Figure 4.Values ofAν obtained by comparing eachmeasured damping rate with the correspondingΓν of (2). Red squares: low
hydrodynamicity data of [16]. Blue dots: our data. The absence of any correlation betweenAν and kBT/μ confirms that the damping
has the T m dependence given by Landau theory. Line: weightedmean of ourmeasurements, which is approximately half that of
[16].

2
The data in [16]were comparedwith equation (17) of [10], but the comparison should have beenwith equation (18) of [10]. In ourfigures 3

and 5 this has been corrected.
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In all the damping experiments, the energy in the initial coherentmotion is very large comparedwith .w
Indeed, the ratio of these is generally greater than the number of atoms in the cloud. It is therefore interesting
that the analytical theory reproduces themeasured 3Ddamping rates, because the theory assumes a Bogoliubov
mode of energy w that is weakly excited. The agreement between experiment and theory indicates that the
damping rate calculated for weak excitations is still applicable when the excitation is strong.

Collective excitations have been simulated numerically using themethod of Zaremba et al [35], whichmakes
Hartree–Fock and semi-classical approximations to derive ameanfield equation for the condensate coupled to a
Boltzmann equation for the thermal cloud. Simulations by Jackson andZaremba [36–38], have proved to be in
good agreement with the 3D experiments [7, 12, 39] respectively. However, in the 3D/1D cross-over where

k T ,Bw m~ ~r the quantization of the radial excitations is not well approximated by a semi-classical
treatment, as we have shownhere. A fully quantum treatmentmay be possible using the perturbative approach
of [9, 40], but we are not aware of any such treatment in the 3D/1D crossover regime.Our results provide a point
of reference for such simulations. In futurewe hope to vary the transverse width of our trap in order to elucidate
further the damping behaviour in this dimensional crossover region.

Acknowledgments

Weare indebted to Peter van der Straten, Eugene Zaremba, Gora Shlyapnikov andNathanWelch for valuable
discussions.We acknowledge the expert technical support of JonDyne, SteveMaine, andValerius Gerulis. This
workwas supported by the European FP7 project AQUTE, by theUKEPSRC and by the Royal Society. Data
underlying this article can be accessed via theCentre for ColdMatter website at http://www3.imperial.ac.uk/
ccm/publications. This data is available under anOpenData CommonsAttribution Licence (ODC-BY):
http://opendefinition.org/licenses/odc-by.

References

[1] LevinK, Fetter A and Stamper-KurnD2012Ultracold Bosonic and Fermionic Gases (Contemporary Concepts of CondensedMatter Science
vol 5) (Amsterdam: Elsevier)

[2] BagnatoV andKleppnerD 1991Phys. Rev.A 44 7439
[3] PethickC and SmithH2002Bose–Einstein Condensation inDilute Gases (Cambridge: Cambridge university press)
[4] Polkovnikov A, Sengupta K, Silva A andVengalattoreM2011Rev.Mod. Phys. 83 863
[5] JinD S, Ensher J R,MathewsMR,WiemanCE,DurfeeD S andCornell E A 1996Phys. Rev. Lett. 77 420
[6] MewesMO,AndrewsMR, vanDrutenN J, KurnDM,DurfeeD S, TownsendC andGandKetterleW1996Phys. Rev. Lett. 77 988
[7] JinD S,MatthewsMR, Ensher J R,WiemanCE andCornell E A 1997Phys. Rev. Lett. 78 764
[8] LiuWV1997Phys. Rev. Lett. 79 4056
[9] Pitaevskii L P and Stringari S 1997Phys. Lett.A 235 398–402
[10] Fedichev PO, ShlyapnikovGV andWalraven J TM1998Phys. Rev. Lett. 80 2269–72
[11] Fedichev PO and ShlyapnikovGV1998Phys. Rev.A 58 3146–58
[12] MaragòO,HechenblaiknerG,Hodby E and Foot C 2001Phys. Rev. Lett. 86 3938
[13] Stamper-KurnDM,MiesnerH J, Inouye S, AndrewsMR andKetterleW1998Phys. Rev. Lett. 81 500–3
[14] Zaremba E, GriffinA andNikuni T 1998Phys. Rev.A 57 4695

Figure 5.Ratio ofmeasured damping rates γ to theΓν of (2), takingAν= 7, plotted versus hydrodynamicity [34]. Red squares: data of
[16], showing an increase in this ratiowith increasing hydrodynamicity. Blue circles: our data, showing a suppressed value ofAν and
no excess damping up to a hydrodynamicity of 5.

6

New J. Phys. 17 (2015) 093041 BYuen et al

http://www3.imperial.ac.uk/ccm/publications
http://www3.imperial.ac.uk/ccm/publications
http://opendefinition.org/licenses/odc-by
http://dx.doi.org/10.1103/PhysRevA.44.7439
http://dx.doi.org/10.1103/RevModPhys.83.863
http://dx.doi.org/10.1103/PhysRevLett.77.420
http://dx.doi.org/10.1103/PhysRevLett.77.988
http://dx.doi.org/10.1103/PhysRevLett.78.764
http://dx.doi.org/10.1103/PhysRevLett.79.4056
http://dx.doi.org/10.1016/S0375-9601(97)00666-X
http://dx.doi.org/10.1016/S0375-9601(97)00666-X
http://dx.doi.org/10.1016/S0375-9601(97)00666-X
http://dx.doi.org/10.1103/PhysRevLett.80.2269
http://dx.doi.org/10.1103/PhysRevLett.80.2269
http://dx.doi.org/10.1103/PhysRevLett.80.2269
http://dx.doi.org/10.1103/PhysRevA.58.3146
http://dx.doi.org/10.1103/PhysRevA.58.3146
http://dx.doi.org/10.1103/PhysRevA.58.3146
http://dx.doi.org/10.1103/PhysRevLett.86.3938
http://dx.doi.org/10.1103/PhysRevLett.81.500
http://dx.doi.org/10.1103/PhysRevLett.81.500
http://dx.doi.org/10.1103/PhysRevLett.81.500
http://dx.doi.org/10.1103/PhysRevA.57.4695


[15] Ferlaino F,Maddaloni P, Burger S, Cataliotti F S, Fort C,ModugnoMand InguscioM2002 Phys. Rev.A 66 011604
[16] Meppelink R, Koller S B, Vogels JM, StoofHTC and van der Straten P 2009Phys. Rev. Lett. 103 265301
[17] MoritzH, Stöferle T, KohlM andEsslinger T 2003Phys. Rev. Lett. 91 250402
[18] AndreevA 1980 Sov. J. Exp. Theor. Phys. 51 1038
[19] Mazets I 2011Eur. Phys. J.D 65 43
[20] Kinoshita T,Wenger T andWeissD S 2006Nature 440 900–3
[21] Fertig CD,O’HaraKM,Huckans JH, Rolston S L, PhillipsWDandPorto J V 2005Phys. Rev. Lett. 94 120403
[22] KottkeM, Schulte T, Cacciapuoti L, HellwegD,Drenkelforth S, ErtmerWandArlt J J 2005Phys. Rev.A 72 053631
[23] Fang B, CarleoG, JohnsonA andBouchoule I 2014Phys. Rev. Lett. 113 035301
[24] YuenB 2014 Production and oscillations of a Bose–Einstein condensate PhDThesis Imperial College London
[25] Reichel J, HänselW andHänschTW1999Phys. Rev. Lett. 83 3398–401
[26] Sewell R J et al 2010 J. Phys. B: At.Mol. Opt. Phys. 43 051003
[27] Baumgärtner F, Sewell R J, Eriksson S, Llorente-García I, Dingjan J, Cotter J P andHinds EA 2010Phys. Rev. Lett. 105 243003
[28] KetterleWand vanDrutenN J 1996Adv. At.Mol. Opt. Phys. 37 181–236
[29] Fortágh J, OttH, Kraft S, Günther A andZimmermannC 2002Phys. Rev.A 66 041604
[30] JonesMPA,Vale C J, SahagunD,Hall BV andHinds EA2003Phys. Rev. Lett. 91 080401
[31] Sinclair CD J, Curtis EA, Garcia I L, Retter J A,Hall BV, Eriksson S, Sauer B E andHinds EA 2005Phys. Rev.A 72 031603
[32] NaraschewskiM and Stamper-KurnDM1998Phys. Rev.A 58 2423–6
[33] JonesMPA,Vale C J, SahagunD,Hall BV, EberleinCC, Sauer B E, FurusawaK, RichardsonD andHinds EA 2004 J. Phys. B: At.Mol.

Opt. Phys. 37 15–20
[34] van der Straten P 2014 private communication
[35] Zaremba E,Nikuni T andGriffinA 1999 J. LowTemp. Phys. 116 277–345
[36] Jackson B andZaremba E 2001Phys. Rev. Lett. 87 100404
[37] Jackson B andZaremba E 2002Phys. Rev. Lett. 88 180402
[38] Jackson B andZaremba E 2002Phys. Rev. Lett 89 150402
[39] Chevy F, Bretin V, Rosenbusch P,MadisonKWandDalibard J 2002Phys. Rev. Lett. 88 250402
[40] GuilleumasMandPitaevskii L P 2003Phys. Rev.A 67 053607

7

New J. Phys. 17 (2015) 093041 BYuen et al

http://dx.doi.org/10.1103/PhysRevA.66.011604
http://dx.doi.org/10.1103/PhysRevLett.103.265301
http://dx.doi.org/10.1103/PhysRevLett.91.250402
http://dx.doi.org/10.1140/epjd/e2010-10637-5
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1038/nature04693
http://dx.doi.org/10.1103/PhysRevLett.94.120403
http://dx.doi.org/10.1103/PhysRevA.72.053631
http://dx.doi.org/10.1103/PhysRevLett.113.035301
http://dx.doi.org/10.1103/PhysRevLett.83.3398
http://dx.doi.org/10.1103/PhysRevLett.83.3398
http://dx.doi.org/10.1103/PhysRevLett.83.3398
http://dx.doi.org/10.1088/0953-4075/43/5/051003
http://dx.doi.org/10.1103/PhysRevLett.105.243003
http://dx.doi.org/10.1103/PhysRevA.66.041604
http://dx.doi.org/10.1103/PhysRevLett.91.080401
http://dx.doi.org/10.1103/PhysRevA.72.031603
http://dx.doi.org/10.1103/PhysRevA.58.2423
http://dx.doi.org/10.1103/PhysRevA.58.2423
http://dx.doi.org/10.1103/PhysRevA.58.2423
http://dx.doi.org/10.1088/0953-4075/37/2/L01
http://dx.doi.org/10.1088/0953-4075/37/2/L01
http://dx.doi.org/10.1088/0953-4075/37/2/L01
http://dx.doi.org/10.1023/A:1021846002995
http://dx.doi.org/10.1023/A:1021846002995
http://dx.doi.org/10.1023/A:1021846002995
http://dx.doi.org/10.1103/PhysRevLett.87.100404
http://dx.doi.org/10.1103/PhysRevLett.88.180402
http://dx.doi.org/10.1103/PhysRevLett.89.150402
http://dx.doi.org/10.1103/PhysRevLett.88.250402
http://dx.doi.org/10.1103/PhysRevA.67.053607

	1. Introduction
	2. Condensate oscillations in a thermal background
	3. Measuring the temperature, condensate centre of mass, and damping rate
	4. Results and discussion
	Acknowledgments
	References



