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Abstract

We have measured the damped motion of a trapped Bose—Einstein condensate, oscillating with
respect to a thermal cloud. The cigar-shaped trapping potential provides enough transverse
confinement that the dynamics of the system are intermediate between three-dimensional and one-
dimensional. We find that the scaling of the damping rate with temperature is consistent with Landau
theory, but that the damping rate for axial oscillations at a given temperature is consistently smaller
than expected for a three-dimensional gas. We attribute this to the suppressed density of states for
low-energy transverse excitations (essential excitations for axial Landau damping), which results from
the quantization of the radial motion.

1. Introduction

Trapped, ultracold gases offer a versatile way to investigate quantum many-body physics. Well-isolated from
their surroundings, they can be controlled to cover a wide parameter space, giving access to regimes beyond the
reach of other condensed matter experiments [1]. Confinement reduces the dimensionality of a gas when the
atoms have insufficient energy to reach excited quantum levels. For example, pancake-shaped traps can produce
atwo-dimensional (2D) gas, while a cigar-shaped trap can confine it to one-dimension (1D) [2]. While the static
properties of atomic Bose—Einstein condensates (BEC) are generally well understood [3] the dynamical
behaviour remains an active area of study [4]. In the early days of atomic BEC, oscillations of the shape were
studied, primarily to establish the superfluidity of the condensate, and it was noticed that these oscillations were
damped [5, 6] at a rate that depended strongly on the temperature [7]. An explanation for this was offered by
Landau damping [8, 9], in which a low-energy excitation of the condensate is dissipated into the thermal cloud
by scattering phonons from lower to higher energy. Fedichev et al [ 10, 1 1] extended this theory to the case of a
trapped gas and showed that the damping is determined predominantly by the condensate boundary region,
resulting in a different damping rate from that of a spatially homogeneous gas. This theory found reasonable
agreement with [7], and similar agreement was found with the measured damping rate of the scissors mode of
oscillation [12].

Subsequently, Stamper-Kurn et al [13] excited a cigar-shaped condensate to move rigidly along its length,
out of phase with its thermal component. They saw that this second-sound motion [14] was damped, and noted
that collisions neglected in the Landau theory might play a role because the hydrodynamicity—the thermal
cloud collision rate divided by the oscillation frequency—was not small. The damping of this mode was also
noted in [15] and was studied extensively by Meppelink et al [16]. They found qualitative agreement with [10] at
low values of hydrodynamicity, with a strongly growing discrepancy at higher values, demonstrating the
breakdown of the Landau theory at high density.

Oscillations of long, thin atomic BECs in the 1D regime [17] have very different behaviour, with a very low
predicted damping rate [18, 19] that is too small to measure [20], unless corrugation is added to the trapping
potential [21]. This raises the question of how the damping evolves from the 3D rate, through the crossover
regime where no analytic theory currently exists, to a negligible rate in 1D. Oscillation frequencies have been
measured in this crossover regime [22, 23], but not the damping rate. In this article, we measure the damping
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Figure 1. Diagram of the apparatus. Cold *’Rb atoms are delivered from an LVIS source [31] to a reflection-magneto-optical trap
formed on an atom chip. The atoms are passed to a long, thin magnetic trap formed by a current in the Z-wire together with a uniform
bias field along x. After evaporative cooling, these form a BEC (dark blue). A briefac current in the end wire excites the condensate to
oscillate along z, as indicated by the green arrows. After some time, the cloud is released and allowed to fall for 2 ms under gravity along
y, before being imaged along x by absorption of a laser beam, shown in red.

Z wire

Atom chip

rate for dipole oscillations of a condensate in the crossover regime as a function of temperature, and compare
our results with measurements of [ 16] and the theory of [10, 11]. We find that the oscillations in our experiment
persist for longer than expected for a 3D gas and propose that this is the consequence of suppressed radial
excitations due to the tight transverse confinement of the atoms.

2. Condensate oscillations in a thermal background

We produce highly elongated, finite temperature condensates [24] with the apparatus illustrated in figure 1. A
magneto-optical trap (MOT) cools and collects *’Rb atoms a few millimetres away from the surface of an atom
chip [25]. The MOT is then turned off, and the atoms are transferred to a Ioffe—Pritchard trap approximately
110 um from the surface of the chip [26, 27]. The magnetic trapping field is produced by current in a Z-shaped
wire on the chip, with its central section along z, together with an external bias field along x. The high magnetic
field gradient near the centre of the Z-wire gives tight radial (x, y) confinement with a harmonic oscillation
frequency of w,/2m = 1.4 kHz. Axial (z) confinement is produced by the currents in the ends of the Z-wire and in
the end wires (figure 1), giving an axial frequency of 3 Hz.

We cool the trapped gas further by forced evaporation, using an rf field to flip the spins of the most energetic
atoms so that they are ejected from the trap [28]. By sweeping the escape energy down to a few kilohertz above
the bottom of the trap, we produce an almost pure BEC of approximately 10* atoms at a temperature of
~150 nK. Minor defects in the chip wire cause the current to meander slightly from side to side, producing small
undulations of the trapping potential that make local minima along the z axis up to a microkelvin in depth
[29, 30]. We adjust the centre of the axial trap so that the BEC forms in one of these, which is harmonic over a
small region, with a characteristic frequency of w,/27 = 10 Hz. The condensed atoms are confined to that
region, while the higher-energy atoms in the thermal component of the gas explore a larger axial range, and a
potential which is anharmonic along the axis of the trap. The small variations in the magnetic field along zwhich
cause this anharmonicity have a negligible influence on the transverse confinement. This remains harmonic
with frequency w, for both components of the gas, due to the high magnetic field gradients in the x—y plane.

When the rf field is turned off, the atoms warm up at approximately 50 nK s~ ', presumably due to noise in
the apparatus. To counteract this, we leave the rf field on, so that atoms above some fixed energy are able to leave
the trap. Over a few milliseconds the cloud comes to equilibrium at the temperature where the heating is
balanced by the evaporative cooling. We select a desired temperature in the range 150—310 nK by adjusting the
rffrequency. The temperature remains fixed over the next 500 ms, while the number of trapped atoms decreases,
typically by a few percent.

Our aim is to observe the oscillation of condensed atoms moving through the thermal cloud in order to
determine the damping rate as the system equilibrates. To resonantly excite axial condensate oscillations, we
drive an oscillating current in one of the end wires at 10 Hz for two periods. After this time, the condensate’s
centre of mass is left oscillating with an initial amplitude of ~12 pm. The thermal atoms are largely unaffected
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Figure 2. Density profiles of ultracold atom clouds and oscillations of the condensate. (a) Axial column density profiles measured at
three temperatures. Red dots: 155(3) nK. Blue squares: 251(3) nK. Green triangles: 305(3) nK. Solid lines: fits using theory described in
the text, which takes into account the irregular potential. Dotted lines: profiles of the thermal component of the cloud, determined by
the same fit to theory. (b)-(d) Condensate oscillations for the same three temperatures. Points show the centre of mass of the
condensed component after a period of free oscillation. Lines show the fits to the damped sinusoid in (1). These fits give (b)
v=2.0(6)s " at 155 nK. (c) y=3.8(5)s ' at 251 nK. (d) y=5.7(1.2)s ' at 305 nK.

because they explore the region outside the local potential minimum and are therefore not resonant with this
drive.

We allow the condensate to oscillate through the thermal background for a time ¢, before switching off the
trap and imaging the cloud to determine the condensate’s centre of mass. By increasing tin 12.5 ms steps over a
total of 400 ms, we build up a data set of the damped oscillation. We repeat this process for clouds at different
temperatures which we influence by setting the frequency of the rf field as described above. Thus, we observe
how the system damps as a function of temperature.

3. Measuring the temperature, condensate centre of mass, and damping rate

We determine the temperature of the gas, and centre of mass of the condensate from an absorption image. To
image the atom cloud, we release it from the trap (gravity is up in figure 1), wait for 2 ms, illuminate it with
resonant laser light and view the absorption along x using a CCD camera. This image is then integrated over y to
obtain the one-dimensional axial number density profile of the cloud, n(z) = f dx dy n(r). The data points in
figure 2(a) show axial density profiles measured at three different temperatures. At the lowest temperature (red
dots), the atoms are nearly all in the condensate, with very little signal in the broad thermal background, whereas
the profile at the highest temperature (green triangles) has a clearly visible thermal population on either side of
the cloud.

Our analysis of the cloud profile builds on the method of [32]. The trapping potential is well described by

U(r) = %mw?, p?> + V (2), where pis the radial displacement, and V(z) is the potential on axis, including the

irregularity caused by the meandering current. We determine V(z) from the axial density distribution of cold,
non-condensed clouds as described in [33]. Knowing U(r), we estimate the number density profile of the
condensate, 1.(r), using the Thomas—Fermi approximation. The profile of the thermal component is calculated
by integrating the Bose—Einstein distribution over the effective potential 2gn_(r) + U (r), where the first term is
the mean-field energy of thermal atoms inside the condensate. The cloud is then allowed to evolve freely for 2 ms
to account for the period of free fall (though we find that this makes no significant difference to the axial profile).
We fit this theoretical cloud to the measured density profile n(z) in order to determine the temperature, the
position of the condensate, and the peak condensate number density 11.(0). We note that the Thomas—Fermi
approximation is not well satisfied in our 3D/ 1D condensates, but we find from simulations' that this method
still yields accurate temperatures, while the peak condensate density is underestimated, typically by 10%. These
fits, shown in figure 2(a) as solid lines, are in excellent agreement with the clouds we observe. For the three clouds

1 e . .
A publication is in preparation.
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Figure 3. Damping rate measured as a function of temperature for the oscillation of our highly elongated BEC. Each point is derived by
fitting the oscillation of ~30 cloud images to (1). Vertical error bars show the 1o uncertainty in . Horizontal error bars are smaller
than the symbol. Solid line: a least squares fit of (2) to our data gives A, = 3.53(15). Shading indicates the standard error from the fit.
Dashed line: damping rate given by (2) taking A,, = 7, as observed with the 3D condensate of [ 16, 34].

that are plotted in figure 2(a), we determined the temperatures 155(3), 251(3) and 305(3) nK. The dotted lines
show the thermal cloud density within the condensed regions.

In our experiments, the temperature fluctuates by less than 10 nK from one realisation to the next—mainly
because of fluctuations in the initial number of magnetically trapped atoms—and drifts by less than £20 nK
over an hour. The position of the BEC is very stable, fluctuating from shot to shot by less than 1 pm, which we
associate with mechanical instability of the camera and mirror mounts. It does not drift significantly over
an hour.

Figures 2(b)—(d) show plots of the condensate centre of mass oscillations we measure at each of the three
temperatures used in figure 2(a). It takes approximately 30 min to collect the data points for one plot. We have
analysed 33 such time sequences, covering a range of temperatures from 150 nK up to 310 nK. In each case, the
motion is well described by the exponentially damped sinusoid

z(t) = Ae " sin (wt + ¢) + C, (1)

where A, 7, w, ¢ and C are fit parameters. Parameters A, ¢ and C are independent of temperature, and w increases
only slightly (by 10%) over this range of temperatures. By contrast, v depends significantly on temperature,
increasing by a factor of three.

4, Results and discussion

In figure 3 we plot the damping rate y as a function of the temperature, each point being the result of fitting one
oscillation curve. The temperature assigned to one point is the mean of the ~30 temperatures measured in that
curve, and this has a standard error smaller than the symbols in the plot. A vertical error bar indicates the 1o
uncertainty in 7 for each fit. We note that the dissipated energy of the oscillation has no significant influence on
the temperature, because it corresponds to a negligible rise of ~2 nK.

Damping rates measured in 3D BEC oscillation experiments have generally been consistent with the Landau
damping theory [5-7, 10-12, 16]. For a 3D trapped cloud making small oscillations at a frequency w close to the
trap frequency, this theory gives the damping rate as (see equation (18) of [10])

T _ s
gy/nc(0)

Here A, is a numerical coefficient that depends on which collective mode v/ is excited, a is the s-wave scattering
length, n.(0) is the peak number density of the condensate and g = 4mh%a/m is the usual nonlinear coupling
parameter (the 1 of [10] is the same as our gn.(0)). At each temperature our measurements give values for the
number density and oscillation frequency, from which we construct empirical functions #. (0;T) and w(T).
Using these functions, we fit (2) to our data with A, as the only free parameter. The resultis A, = 3.53(15). The
solid line in figure 3 shows this best fit, with the shaded region covering the standard deviation. This theory
describes our data well, giving a reduced x> of 0.90.

The measurements of Meppelink ef alin [16] involve the same mode as our experiment, but the comparison
of their damping at low hydrodynamicity with (2) yields a coefficient A, = 7 [16, 34], which is double the value

[,=A,w ()

4



10P Publishing

NewJ. Phys. 17 (2015) 093041 BYuenetal

15 20 25 30 35
kT /u

Figure 4. Values of A, obtained by comparing each measured damping rate with the corresponding I, of (2). Red squares: low
hydrodynamicity data of [16]. Blue dots: our data. The absence of any correlation between A, and kg T/ 1« confirms that the damping
has the T/ /i dependence given by Landau theory. Line: weighted mean of our measurements, which is approximately half that of
[16].

that we measure”. That raises the question—what is the difference? The condensate aspect ratio w, / w,inour
experiment is between 2 and 10 times larger than in [16], but this does not affect the 3D Landau damping
coefficient because the integral that gives A, [10] is independent of the aspect ratio. Another difference is the
value of kg T/ 11, which is >3 for the low-hydrodynamicity data of [ 16] but ranges in our experiment from 1.2 to
3.9. Figure 4 plots A, against kg T/ it for each of our data points taken separately and for the low hydrodynamicity
data of [16]. These A, values are obtained by comparing the damping rate for each data point with the
corresponding I',, of (2). This graph shows that the T/ /i dependence of Landau theory is indeed the
dependence observed in our experiment, and it confirms in a different way that our A, is half that of [16].

The essential difference between these two experiments is in the dimensionality of the trapped gas. In [16]
the chemical potential and kT were atleast 28 and 65 times higher than the radial excitation energy respectively,
placing their clouds firmly in the 3D regime. By contrast, j¢/(fw,) >~ 2and 2.3 < kg T /(fiw,) < 4.6 for our
clouds, placing them in the crossover regime between 3D and 1D. The temperature dependence of our result
indicates that the same Landau damping idea still applies, even in this crossover regime, but the density of states,
which enters through the use of Fermi’s golden rule to obtain (2), should be modified to account for the
quantization of the radial excitations [24]. Physically, the thermal excitations in this case are more likely to be
along z, in which case they cannot contribute to the damping, and A, is correspondingly reduced. The reduction
in A, is likely to be weaker at the higher temperatures but we do not have the statistical resolution to see that in
figure 3.

The Utrecht experiment [ 16] measured the damping over a wide range of hydrodynamicity. Following in the
spirit of [16], the red squares in figure 5 plot the ratio of their measured damping rates yto the I',, of (2), with
A, =7[34], plotted versus hydrodynamicity. At low hydrodynamicity, the ratio approaches 1 in their data, and
0.5 in our data (blue circles), as discussed above. Further, the Utrecht data shows an increase in this ratio as the
hydrodynamicity increases, indicating that collisional processes, not incorporated in the model of (2), play an
important role in damping this dipole mode. Figure 5 shows that such an increase does not occur in our case. We
suggest that this too is a consequence of the discrete radial excitation spectrum, which although broadened at
higher collision rates, remains discrete far above a hydrodynamicity of five and therefore suppresses the ability of
thermal-thermal collisions to contribute to the damping.

Following [16], we have taken the hydrodynamicity in figure 5 to be 1y, (V1) 0 /w,, where
g = Newm®/?w)w, /(4mky T)*/? is the average thermal atom number density experienced by thermal atoms in
the harmonic trap, according to the Maxwell-Boltzmann distribution. The quantity (v.) = 4[kgT/(7wm)]' /2is
the mean relative speed between thermal atoms, and o = 8 7 a* is the s-wave scattering cross-section. In future, it
would be better to derive the thermal density from the Bose—Einstein distribution in the harmonic trap, which

fixes the mean density at 0.55 ¢ (%) Qrmkg T2 /W3, ¢ being the Reimann zeta function. This makes no

difference to our conclusions here, but will be important for any future quantitative study of the corrections to
Landau damping.

2 The data in [16] were compared with equation (17) of [10], but the comparison should have been with equation (18) of [10]. In our figures 3
and 5 this has been corrected.
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Figure 5. Ratio of measured damping rates y to the I', of (2), taking A,, = 7, plotted versus hydrodynamicity [34]. Red squares: data of
[16], showing an increase in this ratio with increasing hydrodynamicity. Blue circles: our data, showing a suppressed value of A, and
no excess damping up to a hydrodynamicity of 5.

In all the damping experiments, the energy in the initial coherent motion is very large compared with /xv.
Indeed, the ratio of these is generally greater than the number of atoms in the cloud. It is therefore interesting
that the analytical theory reproduces the measured 3D damping rates, because the theory assumes a Bogoliubov
mode of energy fw that is weakly excited. The agreement between experiment and theory indicates that the
damping rate calculated for weak excitations is still applicable when the excitation is strong.

Collective excitations have been simulated numerically using the method of Zaremba et al [35], which makes
Hartree—Fock and semi-classical approximations to derive a mean field equation for the condensate coupled to a
Boltzmann equation for the thermal cloud. Simulations by Jackson and Zaremba [36—38], have proved to be in
good agreement with the 3D experiments [7, 12, 39] respectively. However, in the 3D/1D cross-over where
hw, ~ p ~ kg T, the quantization of the radial excitations is not well approximated by a semi-classical
treatment, as we have shown here. A fully quantum treatment may be possible using the perturbative approach
of [9, 40], but we are not aware of any such treatment in the 3D /1D crossover regime. Our results provide a point
of reference for such simulations. In future we hope to vary the transverse width of our trap in order to elucidate
further the damping behaviour in this dimensional crossover region.
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