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Abstract 

This paper compares the speed of convergence to an optimal solution of four controllers 
for the problem of balancing a pole on a cart. We demonstrate that controllers whose 
design is tailored specifically to the cart-pole problem (i.e. less general) converge more 
rapidly to an optimal solution. However, the architectures and learning algorithms for those 
networks may not perform well for more general tasks. The four controllers, ordered from 
the least general to the most general, are the Perceptron, the Associative Search Element 
[1], Jordan's approach [3], and Prejudicial Search applied to the ASE architecture. Two of 
the above neural networks, the Perceptron and Prejudicial Search [2] are new methods for 
solving this problem.. The perceptron is a simple two input neuron (summing unit) with 
2 weights and a step function output. The Prejudicial Search is a method for biasing the 
search of possible solutions. It guarantees convergence, but allows the search to be biased 
by heuristics or information about the problem. In this paper, it is combined with the 
ASE architecture. However, the Prejudicial Search technique can be combined with any 
architecture and learning algorithm, extending their ability to handle a more general class 
of problems. 



1 Introduction 

The pole-balancer problem has been used for many years as the classic test of problems where 
the only feedback is failure, Reinforcement Learning Problems. The basic idea is a pole with 
one degree of freedom is attached to a moving cart. The position, velocity, angle, and angular 
velocity are calculated via simulation and fed into the controller. The controller's t~sk is to 
apply a force to the cart in a way that does not cause it to cross () or x boundaries. Four 
approaches will be applied to this problem ranging from very general to very specific. 

The specific approaches are faster, but can not be applied to as ~any problems. Many 
of the approaches in the literature stress the speed of convergence, but do not discuss the 
loss of generality. Different architectures have different cost surfaces, surfaces describing the 
performance of the system based on a criteria, its weights, and its inputs. Therefore, some 
learning schemes may work well on certain architectures and not others. By a clever choice 
of an architecture, a network can be customized to a problem. However, the loss of generality 
must be recognized. 

The least general approach is the 2 input perceptron with a step function output. This 
approach has the fastest convergence for this problem because a bang/bang controller with 
2 inputs can solve this problem. Creating a forward model allows systems to generalize to 
different situations. The forward model biases the search on a neural network control system. 
Both Barto and Sutton [1] and Jordan [3] use some kind of forward modelling. Barto and 
Sutton's Reinforcement learning scheme quantized the space of inputs and limited itself 
to bang/bang control. However, if a system could be quantized in this fashion, it could be 
mapped to their system. Jordan's approach is more general in that it allows continous values 
and does not quantize the space. However, gradient descent/backpropagation techniques, 
such as those used by Jordan, rely on assumptions about the cost surface. If the surface is not 
differentiable or has many local minima, gradient descent techniques, such as Jordan's do not 
work well. In this paper, we present an even more general approach, using prejudicial search. 
Like simulated annealing, prejudicial search guarantees convergence as time approaches 00. 

Unlike simulated annealing, it allows the system to use information about the solution space 
to speed its search. This technique is applied to this problem, but can be applied to more 
general problems. It can also be combined with other techniques used for neural network 
control to avoid local minima problems. 



2 The Problem And Current Approaches 

2.1 The Cart-Pole Balancer 

The system to be controlled consists of a broomstick with one degree of freedom ~ttached 
to a cart which is attached to a track of finite length [1] [5]. There are four state variables 
the system can read: 0, 8, x(absolute position), and x. These values come from sensors or 
differential equation simulation. The constraints the optimal controll~r must satisfy are: 

1. The () limits are +12° and -12° 

2. The x limits are +2.4m and -2.4m 

The cart starts at the origin with () = 0 and all velocities = O. The pole starts to fall, and 
the system responds by applying a force to the cart. This continues indefinitely until the 
system fails. Failure occurs when the cart-pole system passes one of the () or x thresholds. 
Systems that don't fail find limit cycles where they oscillate around the origin. To keep 
consistent with Barto and Sutton's experiments [1], the following assumptions are made in 
the simulation: 

1. The phase space is divided into the following 162 regions. 

(a) () boundaries are at 0°, +1°, _1°, +6°, _6°, +12°, and -12°. 

(b) iJ boundaries are at +50° /sec, -50° /sec, +00° /sec, and _00° /sec. 

(c) X boundaries are at +0.8m, -0.8m, +2.4m, and -2.4m . 

(d) X boundaries are at +0.5m/s, -0.5m/s, +00 mis, -00 m/s 

2. Using bang/bang control with -10 or 10 Newtons of applied force 

3. Simulation of pole balancer dynamics using Euler Integration with time steps of 0.02 
seconds. 

4. The () limits are +12° and -12° 

5. The x limits are +2.4m and -2.4m 

6. Learning Constants: Q' = 1000, 8 = 0.9 

7. The Noise for the ASE below has standard deviation = 0.01 . 

The result of these assumptions is a reduced search'~space using a priori information about 
the problem. 



2.2 The Perceptron Solution 

The simplest neural network model is the perceptron. It consists of a neuron summation 
unit with weighted inputs. In other words, y(t) = Ei:l Xi(t) . Wi(t) . If y(t) > 0, the output 
is a 1. Otherwise, it is a O. Figure 1 shows the 2 input perceptron applying either 10 or 
-10 Newtons of force to the cart. The random search box holds the optimal solutions or 
solutions. Each perceptron serves to divide the solution space into two halves by slicing it 
with a hyperplane. The perceptron is equivalent to a bang/bang controller, where half of 
the space will produce one output. In this particular case, and not. in general, the x and 
x terms are not needed because most of the optimal controllers cause the system to enter 
limit cycles around the center. The first simulation peformed was an analysis of the solution 
space for the 2 weight perceptron. Since there was a high percentage of solutions, it was 
not practical to use a conventional learning method. Instead, uniform random search was 
used to characterize the space of solutions. All of the solutions formed a wedge. Figure 2 
contains the quadrant with the wedge. Each point on the wedge represents the slope of a 
hyperplane mapping the input space into a 10 or -10 force applied to the cart. All of the 
solutions were limited to the quadrant with negative values for both of the gains. Overall, 
12 percent of possible weight values worked. If we used a logistic instead of a step function, 
the weights for an optimal controller would saturate the neurons to produce a bang/bang 
controller effect. Obviously, the percentage of weights giving viable solutions with a logistic 
is reduced. 

2.3 Barto and Sutton Reinforcement Learning 

Barto and Sutton [1] solve the pole-balancer problem with their Reinforcement Learning 
Model. Figure 3 contains the Barto and Sutton controller. It had two major components, an 
Associative Search Element(ASE) and an Adaptive Critic Element(ACE). The ASE is the 
unit that actually controls the force applied to the cart. The 4 element phase space vector 
is mapped into one of the 162 boxes above. That mapping produces a Z vector, a string 
of all Os and one 1 corresponding to each of the 162 possible boxes. Each box i associated 
with the ASE has two pieces of information attached at time t, the weight, Wi ( t) and the 
eligibility, The weight updates depend heavily on the eligibility, a time trace. The eligibility 
associated with a given Wi is incremented by a fixed quantity when its box is activated, Xi 
= 1. Over time, this value decays. If a box is visited frequently, the system will add to 
the current eligibility. This approach gives the system information that is used to choose 
which weights are more likely to have caused a failure. The reinforcement at time t is only 
-1 upon failure and 0 elsewhere. Therefore, the weights of the ASE without the attached 
ACE are only updated on a failure. Since noise is involved and the system applies binary 
forces, the weights determine probabilities( certainty factors) that the force will be applied 
in one direction. However, by using high valued constants, they minimize the effect of the 
nOIse. 
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Fig. 1. 2-Input perceptron pole-balancer. 
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Fig. 3. Adaptive Critic Element pole-balancer of Barto, Sutton, and Anderson. 
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Fig. 4. ASE number of trials to find successful weights. Dashed line is average. 



To bias the search of the ASE, the reinforcement approach uses an Adaptic Critic Ele­
ment. This element's purpose is to give the ASE reinforcement at each time step and not 
just after a failure. Its own weights are updated based on the correctness of its prediction in 
a deterministic fashion when a failure occurs. It also uses its own form of time trace, which 
strengthens weights frequently used. This leads to the encouragement of limit cycles. If a 
box is reached repeatedly in the phase space in 1 trial, the system usually has enter~d a limit 
cycle. The ACE method is closely related to the temporal differences methods [4]. With the 
ACE, the optimal solution to this problem is found within 3000 failure trials. 

Figure 4 shows the number of trials until success for 10 simulati~ns of the ASE. Later, 
the performance of the Prejudicial Search will be compared with the ASE using the same 
architecture. 

2.4 Jordan's Solution 

Jordan [3] also uses a forward model to bias the search of the controlling neural network. 
His architecture is more general because it allows a random starting position and continous 
control. The training for his forward model and his controller both depend on backward error 
propagation. The actual controller, shown in Figure 5, consists of one summation neuron 
with an output logistic that is mapped to the applied force. It has four inputs, x, x, 0, and 
e. The training of those four weights will determine the control scheme. The action and the 
outputs of the forward model are fed into the hidden layer. There is complete interconnec­
tion between the first and second layer. The forward model learns to use the following state 
information with the action unit's output: 

1. Ixl 
2. sgn(x) 

3. Ixl 
4. sgn(x) 

5. 101 

6. sgn(O) 

7. I e I 
8. sgn( e) 

Each one of the above state values is connected to ev~ry neuron in the hidden layer. Likewise, 
the action unit is also connected to every neuroti'in the hidden layer. The hidden layer 
neurons' outputs are connected to a temporal dif.ference unit, which evaluates the correctness 
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of the prediction made by the forward unit and learns by backward error propagation. The 
forward model is trained at a faster rate to adapt to the changes in his force controller, which 
it is modelling. 

Although Jordan's model [3] is more general than Barto and Sutton's [1], it does use 
some knowledge of the problem. He takes advantage of the symmetry of the broomstick 
balancer problem by extracting the sign and the direction of the four state variables. By 
presenting the start positions one at a time, he added noise and reduced the chances of local 
minima problems. However, minima problems were not completely eliminated. 18 out of 
20 of Jordan's runs converged to a solution. The remaining two end'ed in local minima. If 
prejudicial search had been applied, the minima problems would have been eliminated. 

3 The Prejudicial Search 

There are many different methods for searching a solution space. The more general methods 
take longer, but the less general one will not find the best or even good solutions for certain 
classes of problems. Random search is the most general because it uses no information about 
the problem. This proves to be a disadvantage because it fails to focus in regions where good 
solutions have been found in the past. Simulated annealing is another search that guarantees 
to find the global minimum of the error surface(optimal solution for the solution space) as 
time approaches 00. However, it is difficult to map control systems into an appropriate form 
and it takes a long time to find good solutions. Prejudicial search [2] also guarantees those 
convergence properties, but usually at a faster rate. It biases its search towards areas of 
interest, but it can move to other regions. 

If we have some information about where the minimum of a function is located, we can 
use that information to choose weight vectors. For the kth iteration of learning in the system, 
we can guarantee success by insuring that every point in the domain is selected with a finite 
probability density greater than or equal to 1/(1 + k). We need to bound our solution space. 
For instance, if we are at the 49th iteration, there is a probability at least 0.2 for choosing 
a uniformly random weight vector in the solution space. The rest of the 0.98 probability 
can be distributed based on a biased search technique. When a uniform weight choice is 
made, only better solutions are accepted. However, there are no restrictions on the biased 
search technique; it can based on a priori knowledge of the system or information gathered 
from the system's failure, such as eligibility traces. Although we apply this technique to 
control systems, it can be applied to any optimization problem. A formal rigorous proof of 
the prejudicial search's convergence properties can be found in "Prejudicial Searches and the 
Pole Balancer" [2]. 
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Fig. 6. Prejudicial search pole-balancer. 
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4 Applying the Prejudicial Search 

The architecture from the Barto and Sutton ASE(no ACE) [1] is also used with prejudicial 
search to demonstrate how prejudicial search can improve the ASE's performance. This 
combination is illustrated in Figure 6. The first test chose 100,000 random weight vectors 
in the range [-50,50]. The best performance was 27.08 seconds before a failure. Ignoring the 
noise factor, there are 2162 possible solutions. This shows the difficulty of finding optimal 
solutions by random search for this particular architecture. However, an average of 80 out of 
162 regions are used in any successful trial. Over the set of successful' trials, certain regions 
are never reached. This implies a greater percentage of solutions. To provide a statistically 
accurate comparison, the ASE and the ASE with prejudicial search each ran 10 times from 
an initial random weight vector until a successful trial or a fixed limit on the iterations was 
reached. The limit Barto and Sutton [1] used was 10,000 seconds. For our simulations, the 
upper bound was 20,000 seconds. If a failed trial has lasted beyond 5,000 seconds, it is near 
the optimal solution. Any given set of trials was run until a success or 200,000 failures. If a 
failed trial occurred, 200,000 seconds were counted for its contribution to the average. On 
average, the plain ASE converged to an optimal controller after 106,987 failures. The one 
failure kept the pole balanced for 12,655 seconds. The ASE with prejudicial search used 
the same update rule as the plain ASE for times when a uniform choice is not taken. As 
stated above, uniform choices of the weights will only be accepted when better solutions are 
chosen. Therefore, the addition of the occasional uniform search will not force us to leave a 
good area. On the other hand, it may allow us to leave a local minima. The ASE with the 
prejudicial search found the optimal solution within an average of 91,145 failures. The three 
failures kept the pole balanced for 6633, 18038, and 11067 seconds. 

One of the major reasons these solutions worked well is the quantization of the solution 
space. For the successful solutions, a limit cycle was entered, where it entered the same 
regions repeatedly and ignored other regions. Therefore, only those weights are important 
for the solution. Figure 8 shows the boxes(regions) used and the number of times each box 
is entered in a sample sucessful run. 

5 Future Work 

This paper examined the tradeoffs between speed and generality of a solution. Four tech­
niques are used to solve the main pole-balancer problem. The most specific approach, the 
perceptron, found solutions very easily. The architecture used by Barto and Sutton [1] was 
more general, but was limited to problems that could be broken into regions with uniform 
characteristics. Jordan's approach [3] was more general still, but could run into minima 
problems. The prejudicial search [2] was the most general because it guaranteed conver­
gence to a global minima as time approaches 00, ana it could be combined with any of the 
above architectures. 

/' 



To make this simple task harder, we could allow continuous weight ranges and variable 
starting positions. Unless the starting position is near the extremes, it can be ignored. 
A more valid generalization would be variable thetas because nonlinear elements of the 
system would dominate for larger thetas. The problem is important because it provides a 
basis for designing systems that are general enough to handle more complex control systems. 
Some examples include multiple degree of freedom/multiple constraint robotic systems going 
through a continuous motion. By combining prejudicial search with other learning methods, 
the type of cost surface will not be constrained. Therefore, a more general class of systems 
can be controlled effectively. In future work, prejudicial search will be combined with other 
paradigms, such as genetic algorithms, gradient descent, and forward models, in systems 
with a more general architecture. 
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