110 research outputs found

    Microprogram scheme for automatic recovery from computer error

    Get PDF
    Microprogram scheme enables computer to recover from failure in one of its two central processing units during time duration of instruction in which failure occurs. Microprogram advantages include - /1/ built-in interpretive capability, /2/ selection of processing interrupts by priority, and /3/ economical use of bootstrap sequence

    Capripoxvirus tissue tropism and shedding: A quantitative study in experimentally infected sheep and goats

    Get PDF
    AbstractSheeppox virus and goatpox virus cause systemic disease in sheep and goats that is often associated with high morbidity and high mortality. To increase understanding of the pathogenesis of these diseases, we undertook quantitative time-course studies in sheep and goats following intradermal inoculation of Nigerian sheeppox virus or Indian goatpox virus in their respective homologous hosts. Viremia, determined by virus isolation and real-time PCR, cleared within 2 to 3 weeks post inoculation. Peak shedding of viral DNA and infectious virus in nasal, conjunctival and oral secretions occurred between 10 and 14 days post inoculation, and persisted at low levels for up to an additional 3 to 6 weeks. Although gross lesions developed in multiple organ systems, highest viral titers were detected in skin and in discrete sites within oronasal tissues and gastrointestinal tract. The temporal distribution of infectious virus and viral DNA in tissues suggests an underlying pathogenesis that is similar to smallpox and monkeypox where greatest viral replication occurs in the skin. Our data demonstrate that capripoxvirus infections in sheep and goats provide additional and convenient models which are suitable not only for evaluation of poxvirus-specific vaccine concepts and therapeutics, but also study of poxvirus–host interactions

    Net neutrality discourses: comparing advocacy and regulatory arguments in the United States and the United Kingdom

    Get PDF
    Telecommunications policy issues rarely make news, much less mobilize thousands of people. Yet this has been occurring in the United States around efforts to introduce "Net neutrality" regulation. A similar grassroots mobilization has not developed in the United Kingdom or elsewhere in Europe. We develop a comparative analysis of U.S. and UK Net neutrality debates with an eye toward identifying the arguments for and against regulation, how those arguments differ between the countries, and what the implications of those differences are for the Internet. Drawing on mass media, advocacy, and regulatory discourses, we find that local regulatory precedents as well as cultural factors contribute to both agenda setting and framing of Net neutrality. The differences between national discourses provide a way to understand both the structural differences between regulatory cultures and the substantive differences between policy interpretations, both of which must be reconciled for the Internet to continue to thrive as a global medium

    Net neutrality discourses: comparing advocacy and regulatory arguments in the United States and the United Kingdom

    Get PDF
    Telecommunications policy issues rarely make news, much less mobilize thousands of people. Yet this has been occurring in the United States around efforts to introduce "Net neutrality" regulation. A similar grassroots mobilization has not developed in the United Kingdom or elsewhere in Europe. We develop a comparative analysis of U.S. and UK Net neutrality debates with an eye toward identifying the arguments for and against regulation, how those arguments differ between the countries, and what the implications of those differences are for the Internet. Drawing on mass media, advocacy, and regulatory discourses, we find that local regulatory precedents as well as cultural factors contribute to both agenda setting and framing of Net neutrality. The differences between national discourses provide a way to understand both the structural differences between regulatory cultures and the substantive differences between policy interpretations, both of which must be reconciled for the Internet to continue to thrive as a global medium

    Enhanced insulin sensitivity associated with provision of mono and polyunsaturated fatty acids in skeletal muscle cells involves counter modulation of PP2A

    Get PDF
    International audienceAims/Hypothesis: Reduced skeletal muscle insulin sensitivity is a feature associated with sustained exposure to excess saturated fatty acids (SFA), whereas mono and polyunsaturated fatty acids (MUFA and PUFA) not only improve insulin sensitivity but blunt SFA-induced insulin resistance. The mechanisms by which MUFAs and PUFAs institute these favourable changes remain unclear, but may involve stimulating insulin signalling by counter-modulation/repression of protein phosphatase 2A (PP2A). This study investigated the effects of oleic acid (OA; a MUFA), linoleic acid (LOA; a PUFA) and palmitate (PA; a SFA) in cultured myotubes and determined whether changes in insulin signalling can be attributed to PP2A regulation. Principal Findings: We treated cultured skeletal myotubes with unsaturated and saturated fatty acids and evaluated insulin signalling, phosphorylation and methylation status of the catalytic subunit of PP2A. Unlike PA, sustained incubation of rat or human myotubes with OA or LOA significantly enhanced Akt-and ERK1/2-directed insulin signalling. This was not due to heightened upstream IRS1 or PI3K signalling nor to changes in expression of proteins involved in proximal insulin signalling, but was associated with reduced dephosphorylation/inactivation of Akt and ERK1/2. Consistent with this, PA reduced PP2Ac demethylation and tyrosine 307 phosphorylation-events associated with PP2A activation. In contrast, OA and LOA strongly opposed these PA-induced changes in PP2Ac thus exerting a repressive effect on PP2A.Conclusions/Interpretation: Beneficial gains in insulin sensitivity and the ability of unsaturated fatty acids to oppose palmitate-induced insulin resistance in muscle cells may partly be accounted for by counter-modulation of PP2A

    Convergence of a common solution to broad ebolavirus neutralization by glycan cap directed human antibodies

    Get PDF
    Antibodies that target the glycan cap epitope on ebolavirus glycoprotein (GP) are common in the adaptive response of survivors. A subset is known to be broadly neutralizing, but the details of their epitopes and basis for neutralization is not well-understood. Here we present cryo-electron microscopy (cryo-EM) structures of several glycan cap antibodies that variably synergize with GP base-binding antibodies. These structures describe a conserved site of vulnerability that anchors the mucin-like domains (MLD) to the glycan cap, which we name the MLD-anchor and cradle. Antibodies that bind to the MLD-cradle share common features, including the use of IGHV1-69 and IGHJ6 germline genes, which exploit hydrophobic residues and form beta-hairpin structures to mimic the MLD-anchor, disrupt MLD attachment, destabilize GP quaternary structure and block cleavage events required for receptor binding. Our results collectively provide a molecular basis for ebolavirus neutralization by broadly reactive glycan cap antibodies

    The DNA binding CXC domain of MSL2 is required for faithful targeting the Dosage Compensation Complex to the X chromosome

    Get PDF
    Dosage compensation in Drosophila melanogaster involves the selective targeting of the male X chromosome by the dosage compensation complex (DCC) and the coordinate, ∼2-fold activation of most genes. The principles that allow the DCC to distinguish the X chromosome from the autosomes are not understood. Targeting presumably involves DNA sequence elements whose combination or enrichment mark the X chromosome. DNA sequences that characterize ‘chromosomal entry sites’ or ‘high-affinity sites’ may serve such a function. However, to date no DNA binding domain that could interpret sequence information has been identified within the subunits of the DCC. Early genetic studies suggested that MSL1 and MSL2 serve to recognize high-affinity sites (HAS) in vivo, but a direct interaction of these DCC subunits with DNA has not been studied. We now show that recombinant MSL2, through its CXC domain, directly binds DNA with low nanomolar affinity. The DNA binding of MSL2 or of an MSL2–MSL1 complex does not discriminate between different sequences in vitro, but in a reporter gene assay in vivo, suggesting the existence of an unknown selectivity cofactor. Reporter gene assays and localization of GFP-fusion proteins confirm the important contribution of the CXC domain for DCC targeting in vivo

    Cumulative contributions of weak DNA determinants to targeting the Drosophila dosage compensation complex

    Get PDF
    Fine-tuning of X chromosomal gene expression in Drosophila melanogaster involves the selective interaction of the Dosage Compensation Complex (DCC) with the male X chromosome, in order to increase the transcription of many genes. However, the X chromosomal DNA sequences determining DCC binding remain elusive. By adapting a ‘one-hybrid’ assay, we identified minimal DNA elements that direct the interaction of the key DCC subunit, MSL2, in cells. Strikingly, several such novel MSL2 recruitment modules have very different DNA sequences. The assay revealed a novel, 40 bp DNA element that is necessary for recruitment of DCC to an autosomal binding site in flies in the context of a longer sequence and sufficient by itself to direct recruitment if trimerized. Accordingly, recruitment of MSL2 to the single 40 bp element in cells was weak, but as a trimer approached the power of the strongest DCC recruitment site known to date, the roX1 DH site. This element is the shortest MSL2 recruitment sequence known to date. The results support a model for MSL2 recruitment according to which several different, degenerate sequence motifs of variable affinity cluster and synergise to form a high affinity site
    corecore