118 research outputs found
Equilibration in Quark Gluon Plasma
The hydrodynamic expansion rate of quark gluon plasma (QGP) is evaluated and
compared with the scattering rate of quarks and gluons within the system.
Partonic scattering rates evaluated within the ambit of perturbative Quantum
Choromodynamics (pQCD) are found to be smaller than the expansion rate
evaluated with ideal equation of state (EoS) for the QGP. This indicate that
during the space-time evolution the system remains out of equilibrium.
Enhancement of pQCD cross sections and a more realistic EoS keep the partons
closer to the equilibrium.Comment: To be published in the Quark Matter 2008 poster proceeding
Anomalous Chromomagnetic Moments of Quarks and Large Transverse Energy Jets
We consider the jet cross sections for gluons coupling to quarks with an
anomalous chromomagnetic moment. We then apply this to the deviation and bounds
from QCD found in the CDF and D0 Fermilab data, respectively, to find a range
of possible values for the anomalous moments. The quadratic and quartic terms
in the anomalous moments can fit to the rise of a deviation with transverse
energy. Since previous analyses have been done on the top quark total cross
section, here we assume the same moment on all quarks except the top and find
the range TeV for the
CDF data. Assuming the anomalous moment is present only on a charm or bottom
quark which is pair produced results in a range TeV. The magnitudes here are compared with anomalous magnetic moments
that could account for and found to be in the same general range, as well
as not inconsistent with LEP and SLD bounds on .Comment: REVTeX, 11 pages, 2 postscript figure
Light from Cascading Partons in Relativistic Heavy-Ion Collisions
We calculate the production of high energy photons from Compton and
annihilation processes as well as fragmentation off quarks in the parton
cascade model. The multiple scattering of partons is seen to lead to a
substantial production of high energy photons, which rises further when parton
multiplication due to final state radiation is included. The photon yield is
found to be proportional to the number of collisions among the cascading
partons.Comment: revised version: 4 pages, 4 figures, uses REVTEX
Coloron Phenomenology
A flavor-universal extension of the strong interactions was recently proposed
in response to the apparent excess of high- jets in the inclusive jet
spectrum measured at the Tevatron. This paper studies the color octet of
massive gauge bosons (`colorons') that is present in the low-energy spectrum of
the model's Higgs phase. Constraints from searches for new particles decaying
to dijets and from measurements of the weak-interaction parameter imply
that the colorons must have masses greater than 870-1000 GeV. The implications
of recent Tevatron data and the prospective input from future experiments are
also discussed.Comment: 13 pages, 4 embedded Postscript figures, LaTeX, full postscript
version also available at http://smyrd.bu.edu/htfigs/htfigs.html rectified
confusing phrase at end of sub-section on 'dijets
A Poincare-Covariant Parton Cascade Model for Ultrarelativistic Heavy-Ion Reactions
We present a new cascade-type microscopic simulation of nucleus-nucleus
collisions at RHIC energies. The basic elements are partons (quarks and gluons)
moving in 8N-dimensional phase space according to Poincare-covariant dynamics.
The parton-parton scattering cross sections used in the model are computed
within perturbative QCD in the tree-level approximation. The Q^2 dependence of
the structure functions is included by an implementation of the DGLAP mechanism
suitable for a cascade, so that the number of partons is not static, but varies
in space and time as the collision of two nuclei evolves. The resulting parton
distributions are presented, and meaningful comparisons with experimental data
are discussed.Comment: 30 pages. 11 figures. Submitted to Phys.Rev.
Inclusive Higgs boson and dijet production via Double Pomeron exchange
We evaluate Higgs boson and dijet cross-sections at the Tevatron collider via
Double Pomeron exchange when accompanying particles in the central region are
taken into account. Such {\it inclusive} processes, normalized to the observed
dijet rate observed at run I, noticeably increase the predictions for tagged
(anti)protons in the run II with respect to {\it exclusive} ones, with the
potentiality of Higgs boson detection.Comment: 6pages, 4 figure
Search for anomalous top-gluon couplings at LHC revisited
Through top-quark pair productions at LHC, we study possible effects of
nonstandard top-gluon couplings yielded by SU(3)xSU(2)xU(1) invariant
dimension-6 effective operators. We calculate the total cross section and also
some distributions for p p -> t tbar X as functions of two anomalous-coupling
parameters, i.e., the chromoelectric and chromomagnetic moments of the top,
which are constrained by the total cross section sigma(p pbar -> t tbar X)
measured at Tevatron. We find that LHC might give us some chances to observe
sizable effects induced by those new couplings.Comment: One comment and related two refs. added. Final version (to appear in
Eur.Phys.J. C
Parton energy loss in an expanding quark-gluon plasma: Radiative vs collisional
We perform a comparison of the radiative and collisional parton energy losses
in an expanding quark-gluon plasma. The radiative energy loss is calculated
within the light-cone path integral approach. The collisional energy loss is
calculated using the Bjorken method with an accurate treatment of the binary
collision kinematics. Our numerical results demonstrate that for RHIC and LHC
conditions the collisional energy loss is relatively small in comparison to the
radiative one. We find an enhancement of the heavy quark radiative energy loss
as compared to that of the light quarks at high energies.Comment: 13 pages, 3 figure
Parton rescattering and screening in Au+Au collisions at RHIC
We study the microscopic dynamics of quarks and gluons in relativistic heavy
ion collisions in the framework of the Parton Cascade Model. We use lowest
order perturbative QCD cross sections with fixed lower momentum cutoff p_0. We
calculate the time-evolution of the Debye-screening mass for Au+Au collisions
at sqrt(s)=200 GeV per nucleon pair. The screening mass is used to determine a
lower limit for the allowed range of p_0. We also determine the energy density
reached through hard and semi-hard processes at RHIC, obtain a lower bound for
the rapidity density of charged hadrons produced by semihard interactions, and
analyze the extent of perturbative rescattering among partons.Comment: 6 pages, 4 figures, uses RevTeX 4.0; revised version with minor
corrections and one updated figur
Has the QCD RG-Improved Parton Content of Virtual Photons been Observed?
It is demonstrated that present and DIS ep data on the structure of
the virtual photon can be understood entirely in terms of the standard `naive'
quark--parton model box approach. Thus the QCD renormalization group (RG)
improved parton distributions of virtual photons, in particular their gluonic
component, have not yet been observed. The appropriate kinematical regions for
their future observation are pointed out as well as suitable measurements which
may demonstrate their relevance.Comment: 24 pages, LaTeX, 5 figure
- …
