68 research outputs found
Positive solutions for a class of infinite semipositone problems involving the p-Laplacian operator
We discuss the existence of a positive solution to a given infinite semipositone problem
Modelling Temperature Variation of Mushroom Growing Hall Using Artificial Neural Networks
The recent developments of computer and electronic systems have made the use
of intelligent systems for the automation of agricultural industries. In this
study, the temperature variation of the mushroom growing room was modeled by
multi-layered perceptron and radial basis function networks based on
independent parameters including ambient temperature, water temperature, fresh
air and circulation air dampers, and water tap. According to the obtained
results from the networks, the best network for MLP was in the second
repetition with 12 neurons in the hidden layer and in 20 neurons in the hidden
layer for radial basis function network. The obtained results from comparative
parameters for two networks showed the highest correlation coefficient (0.966),
the lowest root mean square error (RMSE) (0.787) and the lowest mean absolute
error (MAE) (0.02746) for radial basis function. Therefore, the neural network
with radial basis function was selected as a predictor of the behavior of the
system for the temperature of mushroom growing halls controlling system
Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques
© 2018 Elsevier B.V. Flood risk mapping and modeling is important to prevent urban flood damage. In this study, a flood risk map was produced with limited hydrological and hydraulic data using two state-of-the-art machine learning models: Genetic Algorithm Rule-Set Production (GARP) and Quick Unbiased Efficient Statistical Tree (QUEST). The flood conditioning factors used in modeling were: precipitation, slope, curve number, distance to river, distance to channel, depth to groundwater, land use, and elevation. Based on available reports and field surveys for Sari city (Iran), 113 points were identified as flooded areas (with each flooded zone assigned a value of 1). Different conditioning factors, including urban density, quality of buildings, age of buildings, population density, and socio-economic conditions, were taken into account to analyze flood vulnerability. In addition, the weight of these conditioning factors was determined based on expert knowledge and Fuzzy Analytical Network Process (FANP). An urban flood risk map was then produced using flood hazard and flood vulnerability maps. The area under the receiver-operator characteristic curve (AUC-ROC) and Kappa statistic were applied to evaluate model performance. The results demonstrated that the GARP model (AUC-ROC = 93.5%, Kappa = 0.86) had higher performance accuracy than the QUEST model (AUC-ROC = 89.2%, Kappa = 0.79). The results also indicated that distance to channel, land use, and elevation played major roles in flood hazard determination, whereas population density, quality of buildings, and urban density were the most important factors in terms of vulnerability. These findings demonstrate that machine learning models can help in flood risk mapping, especially in areas where detailed hydraulic and hydrological data are not available
A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination
© 2018 Elsevier B.V. This study aimed to develop a novel framework for risk assessment of nitrate groundwater contamination by integrating chemical and statistical analysis for an arid region. A standard method was applied for assessing the vulnerability of groundwater to nitrate pollution in Lenjanat plain, Iran. Nitrate concentration were collected from 102 wells of the plain and used to provide pollution occurrence and probability maps. Three machine learning models including boosted regression trees (BRT), multivariate discriminant analysis (MDA), and support vector machine (SVM) were used for the probability of groundwater pollution occurrence. Afterwards, an ensemble modeling approach was applied for production of the groundwater pollution occurrence probability map. Validation of the models was carried out using area under the receiver operating characteristic curve method (AUC); values above 80% were selected to contribute in ensembling process. Results indicated that accuracy for the three models ranged from 0.81 to 0.87, therefore all models were considered for ensemble modeling process. The resultant groundwater pollution risk (produced by vulnerability, pollution, and probability maps) indicated that the central regions of the plain have high and very high risk of nitrate pollution further confirmed by the exiting landuse map. The findings may provide very helpful information in decision making for groundwater pollution risk management especially in semi-arid regions
On the existence of positive weak solutions for a class of (p,q)-Laplacian nonlinear elliptic system with sign-changing weights
Evaluation of watershed health using Fuzzy-ANP approach considering geo-environmental and topo-hydrological criteria
© 2018 Elsevier Ltd Assessment of watershed health and prioritization of sub-watersheds are needed to allocate natural resources and efficiently manage watersheds. Characterization of health and spatial prioritization of sub-watersheds in data scarce regions helps better comprehend real watershed conditions and design and implement management strategies. Previous studies on the assessment of health and prioritization of sub-watersheds in ungauged regions have not considered environmental factors and their inter-relationship. In this regard, fuzzy logic theory can be employed to improve the assessment of watershed health. The present study considered a combination of climate vulnerability (Climate Water Balance), relative erosion rate of surficial rocks, slope weighted K-factor, topographic indices, thirteen morphometric characteristics (linear, areal, and relief aspects), and potential non-point source pollution to assess watershed health, using a new framework which considers the complex linkage between human activities and natural resources. The new framework, focusing on watershed health score (WHS), was employed for the spatial prioritization of 31 sub-watersheds in the Khoy watershed, West Azerbaijan Province, Iran. In this framework, an analytical network process (ANP) and fuzzy theory were used to investigate the inter-relationships between the above mentioned geo-environmental factors and to classify and rank the health of each sub-watershed in four classes. Results demonstrated that only one sub-watershed (C15) fell into the class that was defined as ‘a potentially critical zone’. This article provides a new framework and practical recommendations for watershed management agencies with a high level of assurance when there is a lack of reliable hydrometric gauge data
Urban flood risk mapping using the GARP and QUEST models:a comparative study of machine learning techniques
Abstract
Flood risk mapping and modeling is important to prevent urban flood damage. In this study, a flood risk map was produced with limited hydrological and hydraulic data using two state-of-the-art machine learning models: Genetic Algorithm Rule-Set Production (GARP) and Quick Unbiased Efficient Statistical Tree (QUEST). The flood conditioning factors used in modeling were: precipitation, slope, curve number, distance to river, distance to channel, depth to groundwater, land use, and elevation. Based on available reports and field surveys for Sari city (Iran), 113 points were identified as flooded areas (with each flooded zone assigned a value of 1). Different conditioning factors, including urban density, quality of buildings, age of buildings, population density, and socio-economic conditions, were taken into account to analyze flood vulnerability. In addition, the weight of these conditioning factors was determined based on expert knowledge and Fuzzy Analytical Network Process (FANP). An urban flood risk map was then produced using flood hazard and flood vulnerability maps. The area under the receiver-operator characteristic curve (AUC-ROC) and Kappa statistic were applied to evaluate model performance. The results demonstrated that the GARP model (AUC-ROC = 93.5%, Kappa = 0.86) had higher performance accuracy than the QUEST model (AUC-ROC = 89.2%, Kappa = 0.79). The results also indicated that distance to channel, land use, and elevation played major roles in flood hazard determination, whereas population density, quality of buildings, and urban density were the most important factors in terms of vulnerability. These findings demonstrate that machine learning models can help in flood risk mapping, especially in areas where detailed hydraulic and hydrological data are not available
Combined gamma and M-test-based ANN and ARIMA models for groundwater fluctuation forecasting in semiarid regions
- …
