553 research outputs found
Strong Correlations in Actinide Redox Reactions
Reduction-oxidation (redox) reactions of the redox couples An(VI)/An(V),
An(V)/An(IV), and An(IV)/An(III), where An is an element in the family of early
actinides (U, Np, and Pu), as well as Am(VI)/Am(V) and Am(V)/Am(III), are
modeled by combining density functional theory with a generalized Anderson
impurity model that accounts for the strong correlations between the 5f
electrons. Diagonalization of the Anderson impurity model yields improved
estimates for the redox potentials and the propensity of the actinide complexes
to disproportionate.Comment: 17 pages, 10 figure, 3 tables. Corrections and clarifications; this
version has been accepted for publication in The Journal of Chemical Physic
Digital curriculum resources in mathematics education: foundations for change
In this conceptual review paper we draw on recent literature with respect to digital curriculum resources (DCR); we briefly outline and explain selected theoretical frames; and we discuss issues related to the design, and the use (by teachers and students) of digital curricula and e-textbooks in mathematics education. The results of our review show the following. Firstly, whilst there are some contrasting tendencies between research on instructional technology and research on DCR, these studies are at the same time predominantly framed by socio-cultural theories. Secondly, whilst there seems to be a continuing demarcation between the design(er) and the use(r), there is at the same time an emerging/increasing understanding that design continues in use, due to the different nature and affordances of DCR (as compared to traditional text curriculum resources). Thirdly, there is an apparent weakening of traditional demarcations between pedagogy and assessment, and between summative and formative assessment techniques, due to the nature and design of the automated learning systems. Fourthly, there is an increasing need for understanding the expanded space of interaction associated with the shift from static print to dynamic/interactive DCR, a shift that has the potential to support different forms of personalised learning and interaction with resources. Hence, we claim that DCR offer opportunities for change: of understandings concerning the design and use of DCR; of their quality; and of the processes related to teacher/student interactions with DCR—they provide indeed the foundations for change
Digital curriculum resources in mathematics education: foundations for change
In this conceptual review paper we draw on recent literature with respect to digital curriculum resources (DCR); we briefly outline and explain selected theoretical frames; and we discuss issues related to the design, and the use (by teachers and students) of digital curricula and e-textbooks in mathematics education. The results of our review show the following. Firstly, whilst there are some contrasting tendencies between research on instructional technology and research on DCR, these studies are at the same time predominantly framed by socio-cultural theories. Secondly, whilst there seems to be a continuing demarcation between the design(er) and the use(r), there is at the same time an emerging/increasing understanding that design continues in use, due to the different nature and affordances of DCR (as compared to traditional text curriculum resources). Thirdly, there is an apparent weakening of traditional demarcations between pedagogy and assessment, and between summative and formative assessment techniques, due to the nature and design of the automated learning systems. Fourthly, there is an increasing need for understanding the expanded space of interaction associated with the shift from static print to dynamic/interactive DCR, a shift that has the potential to support different forms of personalised learning and interaction with resources. Hence, we claim that DCR offer opportunities for change: of understandings concerning the design and use of DCR; of their quality; and of the processes related to teacher/student interactions with DCR—they provide indeed the foundations for change
Clinical improvements following bilateral anterior capsulotomy in treatment-resistant depression
The purpose of this study was to evaluate a programme of lesion surgery carried out on patients with treatment-resistant depression (TRD).
This was a retrospective study looking at clinical and psychometric data from 45 patients with TRD who had undergone bilateral stereotactic anterior capsulotomy surgery over a period of 15 years, with the approval of the Mental Health Act Commission (37 with unipolar depression and eight with bipolar disorder). The Beck Depression Inventory (BDI) before and after surgery was used as the primary outcome measure. The Montgomery–Asberg Depression Rating Scale was administered and cognitive aspects of executive and memory functions were also examined. We carried out a paired-samples t test on the outcome measures to determine any statistically significant change in the group as a consequence of surgery.
Patients improved on the clinical measure of depression after surgery by −21.20 points on the BDI with a 52% change. There were no significant cognitive changes post-surgery. Six patients were followed up in 2013 by phone interview and reported a generally positive experience. No major surgical complications occurred.
With the limitations of an uncontrolled, observational study, our data suggest that capsulotomy can be an effective treatment for otherwise TRD. Performance on neuropsychological tests did not deteriorate
Single view silhouette fitting techniques for estimating tennis racket position
Stereo camera systems have been used to track markers attached to a racket, allowing its position to be obtained in three-dimensional (3D) space. Typically, markers are manually selected on the image plane, but this can be time-consuming. A markerless system based on one stationary camera estimating 3D racket position data is desirable for research and play. The markerless method presented in this paper relies on a set of racket silhouette views in a common reference frame captured with a calibrated camera and a silhouette of a racket captured with a camera whose relative pose is outside the common reference frame. The aim of this paper is to provide validation of these single view fitting techniques to estimate the pose of a tennis racket. This includes the development of a calibration method to provide the relative pose of a stationary camera with respect to a racket. Mean static racket position was reconstructed to within ±2 mm. Computer generated camera poses and silhouette views of a full size racket model were used to demonstrate the potential of the method to estimate 3D racket position during a simplified serve scenario. From a camera distance of 14 m, 3D racket position was estimated providing a spatial accuracy of 1.9 ± 0.14 mm, similar to recent 3D video marker tracking studies of tennis
Conceptualising computerized adaptive testing for measurement of latent variables associated with physical objects
The notion of that more or less of a physical feature affects in different degrees the users' impression with regard to an underlying attribute of a product has frequently been applied in affective engineering. However, those attributes exist only as a premise that cannot directly be measured and, therefore, inferences based on their assessment are error-prone. To establish and improve measurement of latent attributes it is presented in this paper the concept of a stochastic framework using the Rasch model for a wide range of independent variables referred to as an item bank. Based on an item bank, computerized adaptive testing (CAT) can be developed. A CAT system can converge into a sequence of items bracketing to convey information at a user's particular endorsement level. It is through item banking and CAT that the financial benefits of using the Rasch model in affective engineering can be realised
Construct-level predictive validity of educational attainment and intellectual aptitude tests in medical student selection: meta-regression of six UK longitudinal studies
Background: Measures used for medical student selection should predict future performance during training. A problem for any selection study is that predictor-outcome correlations are known only in those who have been selected, whereas selectors need to know how measures would predict in the entire pool of applicants. That problem of interpretation can be solved by calculating construct-level predictive validity, an estimate of true predictor-outcome correlation across the range of applicant abilities.
Methods: Construct-level predictive validities were calculated in six cohort studies of medical student selection and training (student entry, 1972 to 2009) for a range of predictors, including A-levels, General Certificates of Secondary Education (GCSEs)/O-levels, and aptitude tests (AH5 and UK Clinical Aptitude Test (UKCAT)). Outcomes included undergraduate basic medical science and finals assessments, as well as postgraduate measures of Membership of the Royal Colleges of Physicians of the United Kingdom (MRCP(UK)) performance and entry in the Specialist Register. Construct-level predictive validity was calculated with the method of Hunter, Schmidt and Le (2006), adapted to correct for right-censorship of examination results due to grade inflation.
Results: Meta-regression analyzed 57 separate predictor-outcome correlations (POCs) and construct-level predictive validities (CLPVs). Mean CLPVs are substantially higher (.450) than mean POCs (.171). Mean CLPVs for first-year examinations, were high for A-levels (.809; CI: .501 to .935), and lower for GCSEs/O-levels (.332; CI: .024 to .583) and UKCAT (mean = .245; CI: .207 to .276). A-levels had higher CLPVs for all undergraduate and postgraduate assessments than did GCSEs/O-levels and intellectual aptitude tests. CLPVs of educational attainment measures decline somewhat during training, but continue to predict postgraduate performance. Intellectual aptitude tests have lower CLPVs than A-levels or GCSEs/O-levels.
Conclusions: Educational attainment has strong CLPVs for undergraduate and postgraduate performance, accounting for perhaps 65% of true variance in first year performance. Such CLPVs justify the use of educational attainment measure in selection, but also raise a key theoretical question concerning the remaining 35% of variance (and measurement error, range restriction and right-censorship have been taken into account). Just as in astrophysics, ‘dark matter’ and ‘dark energy’ are posited to balance various theoretical equations, so medical student selection must also have its ‘dark variance’, whose nature is not yet properly characterized, but explains a third of the variation in performance during training. Some variance probably relates to factors which are unpredictable at selection, such as illness or other life events, but some is probably also associated with factors such as personality, motivation or study skills
Creating drag and lift curves from soccer trajectories
Trajectory analysis is an alternative to using wind tunnels to measure a soccer
balls aerodynamic properties. It has advantages over wind tunnel testing such as being
more representative of game play. However, previous work has not presented a method that
produces complete, speed -dependent drag and lift coefficients. Four high-speed cameras in
stereo-calibrated pairs were used to measure the spatial co-ordinates for 29 separate soccer
trajectories. Those trajectories span a range of launch speeds from 9.3 m/s to 29.9 m/s. That
range encompasses low-speed laminar flow of air over a soccer ball, through the drag crises
where air flow is both laminar and turbulent, and up to high-speed turbulent air flow. Results
from trajectory analysis were combined to give speed-dependent drag and lift coefficient
curves for the entire range of speeds found in the 29 trajectories. Average root mean square
error between measured and modelled trajectory was 0.028 m horizontally and 0.034 m
vertically. The drag and lift crises can be observed in the plots of drag and lift coefficients
respectively
Recommended from our members
Highly efficient separation of actinides from lanthanides by a phenanthroline-derived bis-triazine ligand
The synthesis, lanthanide complexation, and solvent ex- traction of actinide(III) and lanthanide(III) radiotracers from nitric acid solutions by a phenanthroline-derived quadridentate bis-triazine ligand are described. The ligand separates Am(III) and Cm(III) from the lanthanides with remarkably high efficiency, high selectivity, and fast extraction kinetics compared to its 2,2'-bipyridine counterpart. Structures of the 1:2 bis-complexes of the ligand with Eu(III) and Yb(III) were elucidated by X-ray crystallography and force field calculations, respec-tively. The Eu(III) bis-complex is the first 1:2 bis-complex of a quadridentate bis-triazine ligand to be characterized by crystallography. The faster rates of extraction were verified by kinetics measurements using the rotating membrane cell technique in several diluents. The improved kinetics of metal ion extraction are related to the higher surface activity of the ligand at the phase interface. The improvement in the ligand's properties on replacing the bipyridine unit with a phenanthroline unit far exceeds what was anticipated based on ligand design alone
- …