1,655 research outputs found
Characterization of actin genes in Bonamia ostreae and their application to phylogeny of the Haplosporidia
Bonamia ostreae is a protozoan parasite that infects the European flat oyster Ostrea edulis, causing systemic infections and resulting in massive mortalities in populations of this valuable bivalve species. In this work, we have characterized B. ostreae actin genes and used their sequences for a phylogenetic analysis. Design of different primer sets was necessary to amplify the central coding region of actin genes of B. ostreae. Characterization of the sequences and their amplification in different samples demonstrated the presence of 2 intragenomic actin genes in B. ostreae, without any intron. The phylogenetic analysis placed B. ostreae in a clade with Minchinia tapetis, Minchinia teredinis and Haplosporidium costale as its closest relatives, and demonstrated that the paralogous actin genes found in Bonamia resulted from a duplication of the original actin gene after the Bonamia origi
Practical Use of Formal Concept Analysis in Service-Oriented Computing
International audiencePervasive applications are encountered in a number of settings, including smart houses, intelligent buildings or connected plants. Service-Oriented Computing is today the technology of choice for implementing and exposing resources in such environments. The selection of appropriate services at the right moment in order to compose meaningful applications is however a real issue. In this paper, we propose a FCA-based solution to this problem.We have integrated FCA algorithms in our pervasive gateways and adapted them in order to allow efficient runtime selection of heterogeneous and dynamic services. This work has been applied to realistic use cases in the scope of a European project
Photoinduced suppression of the ferroelectric instability in PbTe
The interactions between electrons and phonons drive a large array of
technologically relevant material properties including ferroelectricity,
thermoelectricity, and phase-change behaviour. In the case of many group IV-VI,
V, and related materials, these interactions are strong and the materials exist
near electronic and structural phase transitions. Their close proximity to
phase instability produces a fragile balance among the various properties. The
prototypical example is PbTe whose incipient ferroelectric behaviour has been
associated with large phonon anharmonicity and thermoelectricity. Experimental
measurements on PbTe reveal anomalous lattice dynamics, especially in the soft
transverse optical phonon branch. This has been interpreted in terms of both
giant anharmonicity and local symmetry breaking due to off-centering of the Pb
ions. The observed anomalies have prompted renewed theoretical and
computational interest, which has in turn revived focus on the extent that
electron-phonon interactions drive lattice instabilities in PbTe and related
materials. Here, we use Fourier-transform inelastic x-ray scattering (FT-IXS)
to show that photo-injection of free carriers stabilizes the paraelectric
state. With support from constrained density functional theory (CDFT)
calculations, we find that photoexcitation weakens the long-range forces along
the cubic direction tied to resonant bonding and incipient ferroelectricity.
This demonstrates the importance of electronic states near the band edges in
determining the equilibrium structure.Comment: 9 page, 3 figure
Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5
THz-frequency optical pulses can resonantly drive selected vibrational modes
in solids and deform their crystal structure. In complex oxides, this method
has been used to melt electronic orders, drive insulator to metal transitions
or induce superconductivity. Strikingly, coherent interlayer transport strongly
reminiscent of superconductivity can be transiently induced up to room
temperature in YBa2Cu3O6+x. By combining femtosecond X-ray diffraction and ab
initio density functional theory calculations, we determine here the crystal
structure of this exotic non-equilibrium state. We find that nonlinear lattice
excitation in normal-state YBa2Cu3O6+x at 100 K causes a staggered
dilation/contraction of the Cu-O2 intra/inter- bilayer distances, accompanied
by anisotropic changes in the in-plane O-Cu-O bond buckling. Density functional
theory calculations indicate that these motions cause dramatic changes in the
electronic structure. Amongst these, the enhancement in the dx2-y2 character of
the in-plane electronic structure is likely to favor superconductivity.Comment: 28 pages, including Supplemen
Caloric dose-responsive genes in blood cells differentiate the metabolic status of obese men.
We have investigated the postprandial transcriptional response of blood cells to increasing caloric doses of a meal challenge to test whether the dynamic response of the human organism to the ingestion of food is dependent on metabolic health. The randomized crossover study included seven normal weight and seven obese men consuming three doses (500/1000/1500 kcal) of a high-fat meal. The blood cell transcriptome was measured before and 2, 4, and 6 h after meal ingestion (168 samples). We applied univariate and multivariate statistics to investigate differentially expressed genes in both study groups. We identified 624 probe sets that were up- or down-regulated after the caloric challenge in a dose-dependent manner. These transcripts were most responsive to the 1500 kcal challenge in the obese group and were associated with postprandial insulin and oxidative phosphorylation. Furthermore, the data revealed a separation of the obese group into individuals whose response was close to the normal weight group and individuals with a transcriptional response indicative of a loss of metabolic flexibility. The molecular signature provided by the postprandial transcriptomic response of blood cells to increasing caloric doses of a high-fat meal challenge may represent a sensitive way to evaluate the qualitative impact of food on human health
Índice comprimento/largura da folha no melhoramento do feijão (Phaseolus vulgaris L.).
O índice comprimento/largura do folíolo central da folha composta originada no quarto nó da planta é um dos descritores referidos à proteção de cultivares de feijão (a determinação na folha do quarto nó é estabelecida por analogia com a determinação da cor do referido folíolo contida no formulário ?Descritores mínimos de feijão?, do Serviço Nacional de Proteção de Cultivares- SNPC)
Unambiguous comparison of the states of multiple quantum systems
We consider N quantum systems initially prepared in pure states and address
the problem of unambiguously comparing them. One may ask whether or not all
systems are in the same state. Alternatively, one may ask whether or not the
states of all N systems are different. We investigate the possibility of
unambiguously obtaining this kind of information. It is found that some
unambiguous comparison tasks are possible only when certain linear independence
conditions are satisfied. We also obtain measurement strategies for certain
comparison tasks which are optimal under a broad range of circumstances, in
particular when the states are completely unknown. Such strategies, which we
call universal comparison strategies, are found to have intriguing connections
with the problem of quantifying the distinguishability of a set of quantum
states and also with unresolved conjectures in linear algebra. We finally
investigate a potential generalisation of unambiguous state comparison, which
we term unambiguous overlap filtering.Comment: 20 pages, no figure
Inflammatory and metabolic responses to high-fat meals with and without dairy products in men.
Postprandial inflammation is an important factor for human health since chronic low-grade inflammation is associated with chronic diseases. Dairy products have a weak but significant anti-inflammatory effect on postprandial inflammation. The objective of the present study was to compare the effect of a high-fat dairy meal (HFD meal), a high-fat non-dairy meal supplemented with milk (HFM meal) and a high-fat non-dairy control meal (HFC meal) on postprandial inflammatory and metabolic responses in healthy men. A cross-over study was conducted in nineteen male subjects. Blood samples were collected before and 1, 2, 4 and 6 h after consumption of the test meals. Plasma concentrations of insulin, glucose, total cholesterol, LDL-cholesterol, HDL-cholesterol, TAG and C-reactive protein (CRP) were measured at each time point. IL-6, TNF-α and endotoxin concentrations were assessed at baseline and endpoint (6 h). Time-dependent curves of these metabolic parameters were plotted, and the net incremental AUC were found to be significantly higher for TAG and lower for CRP after consumption of the HFM meal compared with the HFD meal; however, the HFM and HFD meals were not different from the HFC meal. Alterations in IL-6, TNF-α and endotoxin concentrations were not significantly different between the test meals. The results suggest that full-fat milk and dairy products (cheese and butter) have no significant impact on the inflammatory response to a high-fat meal
Solar interacting protons versus interplanetary protons in the core plus halo model of diffusive shock acceleration and stochastic re-acceleration
With the first observations of solar γ-rays from the decay of pions, the relationship of protons producing ground level enhancements (GLEs) on the Earth to those of similar energies producing the γ-rays on the Sun has been debated. These two populations may be either independent and simply coincident in large flares, or they may be, in fact, the same population stemming from a single accelerating agent and jointly distributed at the Sun and also in space. Assuming the latter, we model a scenario in which particles are accelerated near the Sun in a shock wave with a fraction transported back to the solar surface to radiate, while the remainder is detected at Earth in the form of a GLE. Interplanetary ions versus ions interacting at the Sun are studied for a spherical shock wave propagating in a radial magnetic field through a highly turbulent radial ray (the acceleration core) and surrounding weakly turbulent sector in which the accelerated particles can propagate toward or away from the Sun. The model presented here accounts for both the first-order Fermi acceleration at the shock front and the second-order, stochastic re-acceleration by the turbulence enhanced behind the shock. We find that the re-acceleration is important in generating the γ-radiation and we also find that up to 10% of the particle population can find its way to the Sun as compared to particles escaping to the interplanetary space
Charge-Transfer Excitations in One-Dimensional Dimerized Mott Insulators
We investigate the optical properties of one-dimensional (1D) dimerized Mott
insulators using the 1D dimerized extended Hubbard model. Numerical
calculations and a perturbative analysis from the decoupled-dimer limit clarify
that there are three relevant classes of charge-transfer (CT) states generated
by photoexcitation: interdimer CT unbound states, interdimer CT exciton states,
and intradimer CT exciton states. This classification is applied to
understanding the optical properties of an organic molecular material,
1,3,5-trithia-2,4,6-triazapentalenyl (TTTA), which is known for its
photoinduced transition from the dimerized spin-singlet phase to the regular
paramagnetic phase. We conclude that the lowest photoexcited state of TTTA is
the interdimer CT exciton state and the second lowest state is the intradimer
CT exciton state.Comment: 6 pages, 6 figures, to be published in J. Phys. Soc. Jp
- …
