1,275 research outputs found
Body-freedom flutter of a 1/2-scale forward-swept-wing model, an experimental and analytical study
The aeroelastic phenomenon known as body-freedom flutter (BFF), a dynamic instability involving aircraft-pitch and wing-bending motions which, though rarely experienced on conventional vehicles, is characteristic of forward swept wing (FSW) aircraft was investigated. Testing was conducted in the Langley transonic dynamics tunnel on a flying, cable-mounted, 1/2-scale model of a FSW configuration with and without relaxed static stability (RSS). The BFF instability boundaries were found to occur at significantly lower airspeeds than those associated with aeroelastic wing divergence on the same model. For those cases with RSS, a canard-based stability augmentation system (SAS) was incorporated in the model. This SAS was designed using aerodynamic data measured during a preliminary tunnel test in which the model was attached to a force balance. Data from the subsequent flutter test indicated that BFF speed was not dependent on open-loop static margin but, rather, on the equivalent closed-loop dynamics provided by the SAS. Servo-aeroelastic stability analyses of the flying model were performed using a computer code known as SEAL and predicted the onset of BFF reasonably well
Effect of Goose Removals on a Suburban Canada Goose Population
Local-nesting or resident Canada geese (Branta canadensis) are coming into conflict with people and human activities in urban-suburban areas throughout North America. Capture and removal of molting geese, followed by translocation or euthanasia, is a simple way to reduce the number of geese in an area, but some critics of lethal goose control methods claim that other geese will quickly fill the void left when geese are removed from a problem area. To better understand the effectiveness of urban-suburban goose removal programs, we captured 591 resident geese (mostly adult birds) in suburban Rockland County, New York, during the summer molt, 2004 and 2005. The birds were transported, marked with neck and leg bands and released in a rural area approximately 320 km to the northwest. Band returns indicated that at least 46% of translocated geese were eventually harvested by hunters, most of those (52%) during the first September hunting season after release, and most (72%) were taken within 50 km of the release site. Neckband observations indicated that \u3c10% of translocated birds returned to Rockland County, and few (\u3c1%) moved to suburban areas near the release site. Annual molting period goose surveys throughout Rockland County from 2004- 2008 indicated that removal of geese from selected sites in Clarkstown resulted in nearly 60% fewer geese town wide for three subsequent years, and other geese did not quickly move in to replace birds that we removed. This study demonstrated that goose removal can be an effective way to reduce local goose populations in some areas for at least three years
Modeling raccoon (Procyon lotor) habitat connectivity to identify potential corridors for rabies spread
The United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Wildlife Services National Rabies Management Program has conducted cooperative oral rabies vaccination (ORV) programs since 1997. Understanding the eco-epidemiology of raccoon (Procyon lotor) variant rabies (raccoon rabies) is critical to successful management. Pine (Pinus spp.)-dominated landscapes generally support low relative raccoon densities that may inhibit rabies spread. However, confounding landscape features, such as wetlands and human development, represent potentially elevated risk corridors for rabies spread, possibly imperiling enhanced rabies surveillance and ORV planning. Raccoon habitat suitability in pine-dominated landscapes in Massachusetts, Florida, and Alabama was modeled by the maximum entropy (Maxent) procedure using raccoon presence, and landscape and environmental data. Replicated (n = 100/state) bootstrapped Maxent models based on raccoon sampling locations from 2012â2014 indicated that soil type was the most influential variable in Alabama (permutation importance PI = 38.3), which, based on its relation to landcover type and resource distribution and abundance, was unsurprising. Precipitation (PI = 46.9) and temperature (PI = 52.1) were the most important variables in Massachusetts and Florida, but these possibly spurious results require further investigation. The Alabama Maxent probability surface map was ingested into Circuitscape for conductance visualizations of potential areas of habitat connectivity. Incorporating these and future results into raccoon rabies containment and elimination strategies could result in significant cost-savings for rabies management here and elsewhere
Evaluation of Bird Response to Propane Exploders in an Airport Environment
Bird-aircraft collisions (bird-strikes) cause serious safety hazards to aircraft, costing civilian aviation at least $496 million annually in the U.S. Non-lethal bird-frightening devices, such as propane exploders, are commonly used to deter birds from airport environments. We conducted a study during August - October 2004 to determine the efficacy of propane exploders utilized with and without concurrent lethal reinforcement activities for altering bird behavior at John F. Kennedy International Airport in Queens, New York. Two groups of 8 propane exploders each were deployed on the airfield. One group of propane exploders was set to âoffâ (control), whereas the other group was programmed to activate at 15-minute intervals (treatment). This pattern was reversed each week for a 12-week period. In addition, lethal control activities to reduce gull-aircraft collisions were conducted during August and September 2004. We conducted bird observations associated with propane exploders during the lethal control program (8-week period) and following the end of the program (4-week period). The number of bird flocks (â„1 birds) that were within 150 m of treatment (n = 432) and control (n = 442) propane exploders was similar. Simultaneous lethal control activities at the airport did not alter the effectiveness of the propane exploders. Birds responded (e.g., altered flight path) on 3 of 21 (14.3%) occasions when a bird flock was within 150 m of a treatment propane exploder that activated. Our findings suggest propane exploders used in this manner in this airport environment do not significantly alter birds behavior or reduce the threat of bird-strikes. Future research is needed to evaluate techniques such as motion-activated propane exploders to enhance the effectiveness of this tool to reduce wildlife hazards at airports
Optical properties monitor: Experiment definition phase
The stability of materials used in the space environment will continue to be a limiting technology for space missions. The Optical Properties Monitor (OPM) Experiment provides a comprehensive space research program to study the effects of the space environment-both natural and induced-on optical, thermal and space power materials. The OPM Experiment was selected for definition under the NASA/OAST In-Space Technology Experiment Program. The results of the OPM Definition Phase are presented. The OPM Experiment will expose selected materials to the space environment and measure the effects with in-space optical measurements. In-space measurements include total hemispherical reflectance total integrated scatter and VUV reflectance/transmittance. The in-space measurements will be augmented with extensive pre- and post-flight sample measurements to determine other optical, mechanical, electrical, chemical or surface effects of space exposure. Environmental monitors will provide the amount and time history of the sample exposure to solar irradiation, atomic oxygen and molecular contamination
Polarization Aberrations in Astronomical Telescopes: The Point Spread Function
Detailed knowledge of the image of the point spread function (PSF) is necessary to optimize astronomical coronagraph masks and to understand potential sources of errors in astrometric measurements. The PSF for astronomical telescopes and instruments depends not only on geometric aberrations and scalar wave diffraction but also on those wavefront errors introduced by the physical optics and the polarization properties of reflecting and transmitting surfaces within the optical system. These vector wave aberrations, called polarization aberrations, result from two sources: (1) the mirror coatings necessary to make the highly reflecting mirror surfaces, and (2) the optical prescription with its inevitable non-normal incidence of rays on reflecting surfaces. The purpose of this article is to characterize the importance of polarization aberrations, to describe the analytical tools to calculate the PSF image, and to provide the background to understand how astronomical image data may be affected. To show the order of magnitude of the effects of polarization aberrations on astronomical images, a generic astronomical telescope configuration is analyzed here by modeling a fast Cassegrain telescope followed by a single 90° deviation fold mirror. All mirrors in this example use bare aluminum reflective coatings and the illumination wavelength is 800 nm. Our findings for this example telescope are: (1) The image plane irradiance distribution is the linear superposition of four PSF images: one for each of the two orthogonal polarizations and one for each of two cross-coupled polarization terms. (2) The PSF image is brighter by 9% for one polarization component compared to its orthogonal state. (3) The PSF images for two orthogonal linearly polarization components are shifted with respect to each other, causing the PSF image for unpolarized point sources to become slightly elongated (elliptical) with a centroid separation of about 0.6 mas. This is important for both astrometry and coronagraph applications. (4) Part of the aberration is a polarization-dependent astigmatism, with a magnitude of 22 milliwaves, which enlarges the PSF image. (5) The orthogonally polarized components of unpolarized sources contain different wavefront aberrations, which differ by approximately 32 milliwaves. This implies that a wavefront correction system cannot optimally correct the aberrations for all polarizations simultaneously. (6) The polarization aberrations couple small parts of each polarization component of the light (âŒ10^(-4)) into the orthogonal polarization where these components cause highly distorted secondary, or âghostâ PSF images. (7) The radius of the spatial extent of the 90% encircled energy of these two ghost PSF image is twice as large as the radius of the Airy diffraction pattern. Coronagraphs for terrestrial exoplanet science are expected to image objects 10^(-10), or 6 orders of magnitude less than the intensity of the instrument-induced âghostâ PSF image, which will interfere with exoplanet measurements. A polarization aberration expansion which approximates the Jones pupil of the example telescope in six polarization terms is presented in the appendix. Individual terms can be associated with particular polarization defects. The dependence of these terms on angles of incidence, numerical aperture, and the Taylor series representation of the Fresnel equations lead to algebraic relations between these parameters and the scaling of the polarization aberrations. These âdesign rulesâ applicable to the example telescope are collected in § 5. Currently, exoplanet coronagraph masks are designed and optimized for scalar diffraction in optical systems. Radiation from the âghostâ PSF image leaks around currently designed image plane masks. Here, we show a vector-wave or polarization optimization is recommended. These effects follow from a natural description of the optical system in terms of the Jones matrices associated with each ray path of interest. The importance of these effects varies by orders of magnitude between different optical systems, depending on the optical design and coatings selected. Some of these effects can be calibrated while others are more problematic. Polarization aberration mitigation methods and technologies to minimize these effects are discussed. These effects have important implications for high-contrast imaging, coronagraphy, and astrometry with their stringent PSF image symmetry and scattered light requirements
Rabies Surveillance Identifies Potential Risk Corridors and Enables Management Evaluation
Intensive efforts are being made to eliminate the raccoon variant of rabies virus (RABV) from the eastern United States and Canada. The United States Department of Agriculture (USDA) Wildlife Services National Rabies Management Program has implemented enhanced rabies surveillance (ERS) to improve case detection across the extent of the raccoon oral rabies vaccination (ORV) management area. We evaluated ERS and public health surveillance data from 2006 to 2017 in three northeastern USA states using a dynamic occupancy modeling approach. Our objectives were to examine potential risk corridors for RABV incursion from the U.S. into Canada, evaluate the effectiveness of ORV management strategies, and identify surveillance gaps. ORV management has resulted in a decrease in RABV cases over time within vaccination zones (from occupancy (Ï) of 0.60 standard error (SE) = 0.03 in the spring of 2006 to Ï of 0.33 SE = 0.10 in the spring 2017). RABV cases also reduced in the enzootic area (from Ï of 0.60 SE = 0.03 in the spring of 2006 to Ï of 0.45 SE = 0.05 in the spring 2017). Although RABV occurrence was related to habitat type, greater impacts were associated with ORV and trapâvaccinateârelease (TVR) campaigns, in addition to seasonal and yearly trends. Reductions in RABV occupancy were more pronounced in areas treated with Ontario Rabies Vaccine Bait (ONRAB) compared to RABORAL V-RGÂź. Our approach tracked changes in RABV occurrence across space and time, identified risk corridors for potential incursions into Canada, and highlighted surveillance gaps, while evaluating the impacts of management actions. Using this approach, we are able to provide guidance for future RABV management
- âŠ