34 research outputs found

    Slavnov-Taylor identities for noncommutative QED4_4

    Full text link
    In this work we present an analysis of the one-loop Slavnov-Taylor identities in noncommutative QED4_4. The vectorial fermion-photon and the triple photon vertex functions were studied, with the conclusion that no anomalies arise.Comment: 24 pages, revtex4, v2: typos correcte

    The three-dimensional noncommutative Gross-Neveu model

    Get PDF
    This work is dedicated to the study of the noncommutative Gross-Neveu model. As it is known, in the canonical Weyl-Moyal approach the model is inconsistent, basically due to the separation of the amplitudes into planar and nonplanar parts. We prove that if instead a coherent basis representation is used, the model becomes renormalizable and free of the aforementioned difficulty. We also show that, although the coherent states procedure breaks Lorentz symmetry in odd dimensions, in the Gross-Neveu model this breaking can be kept under control by assuming the noncommutativity parameters to be small enough. We also make some remarks on some ordering prescriptions used in the literature.Comment: 10 pages, IOP article style; v3: revised version, accepted for publication in J. Phys.

    A Nutrient-Driven tRNA Modification Alters Translational Fidelity and Genome-wide Protein Coding across an Animal Genus

    Get PDF
    <div><p>Natural selection favors efficient expression of encoded proteins, but the causes, mechanisms, and fitness consequences of evolved coding changes remain an area of aggressive inquiry. We report a large-scale reversal in the relative translational accuracy of codons across 12 fly species in the <i>Drosophila</i>/<i>Sophophora</i> genus. Because the reversal involves pairs of codons that are read by the same genomically encoded tRNAs, we hypothesize, and show by direct measurement, that a tRNA anticodon modification from guanosine to queuosine has coevolved with these genomic changes. Queuosine modification is present in most organisms but its function remains unclear. Modification levels vary across developmental stages in <i>D. melanogaster</i>, and, consistent with a causal effect, genes maximally expressed at each stage display selection for codons that are most accurate given stage-specific queuosine modification levels. In a kinetic model, the known increased affinity of queuosine-modified tRNA for ribosomes increases the accuracy of cognate codons while reducing the accuracy of near-cognate codons. Levels of queuosine modification in <i>D. melanogaster</i> reflect bioavailability of the precursor queuine, which eukaryotes scavenge from the tRNAs of bacteria and absorb in the gut. These results reveal a strikingly direct mechanism by which recoding of entire genomes results from changes in utilization of a nutrient.</p></div
    corecore