472 research outputs found

    Photon Self-Induced Spin to Orbital Conversion in TGG crystal at high laser power

    Full text link
    In this paper, we present experimental evidence of a newly discovered third-order nonlinear optical process Self-Induced Spin-to-Orbital Conversion (SISTOC) of the photon angular momentum. This effect is the physical mechanism at the origin of the depolarization of very intense laser beams propagating in isotropic materials. The SISTOC process, like self-focusing, is triggered by laser heating leading to a radial temperature gradient in the medium. In this work we tested the occurrence of SISTOC in a terbium gallium garnet (TGG) rod for an impinging laser power of about 100~W. To study the SISTOC process we used different techniques: polarization analysis, interferometry and tomography of the photon orbital angular momentum. Our results confirm, in particular, that the apparent depolarization of the beam is due to the occurrence of maximal entanglement between the spin and orbital angular momentum of the photons undergoing the SISTOC process. This explanation of the true nature of the depolarization mechanism could be of some help in finding novel methods to reduce or to compensate for this usually unwanted depolarization effect in all cases where very high laser power and good beam quality are required.Comment: 6 pages, 10 figures, submitte

    Characterization and limits of a cold atom Sagnac interferometer

    Get PDF
    We present the full evaluation of a cold atom gyroscope based on atom interferometry. We have performed extensive studies to determine the systematic errors, scale factor and sensitivity. We demonstrate that the acceleration noise can be efficiently removed from the rotation signal allowing to reach the fundamental limit of the quantum projection noise for short term measurements. The technical limits to the long term sensitivity and accuracy have been identified, clearing the way for the next generations of ultra-sensitive atom gyroscopes

    Time-resolved photoelectron and photoion fragmentation spectroscopy study of 9-methyladenine and its hydrates: a contribution to the understanding of the ultrafast radiationless decay of excited DNA bases.

    Get PDF
    The excited state dynamics of the purine base 9-methyladenine (9Me-Ade) has been investigated by time- and energy-resolved photoelectron imaging spectroscopy and mass-selected ion spectroscopy, in both vacuum and water-cluster environments. The specific probe processes used, namely a careful monitoring of time-resolved photoelectron energy distributions and of photoion fragmentation, together with the excellent temporal resolution achieved, enable us to derive additional information on the nature of the excited states (pp*, np*, ps*, triplet) involved in the electronic relaxation of adenine. The two-step pathway we propose to account for the double exponential decay observed agrees well with recent theoretical calculations. The near-UV photophysics of 9Me-Ade is dominated by the direct excitation of the pp* (1Lb) state (lifetime of 100 fs), followed by internal conversion to the np* state (lifetime in the ps range) via conical intersection. No evidence for the involvement of a ps* or a triplet state was found. 9Me- Ade–(H2O)n clusters have been studied, focusing on the fragmentation of these species after the probe process. A careful analysis of the fragments allowed us to provide evidence for a double exponential decay profile for the hydrates. The very weak second component observed, however, led us to conclude that the photophysics were very different compared with the isolated base, assigned to a competition between (i) a direct one-step decay of the initially excited state (pp* La and/or Lb, stabilised by hydration) to the ground state and (ii) a modified two-step decay scheme, qualitatively comparable to that occurring in the isolated molecule

    6-axis inertial sensor using cold-atom interferometry

    Full text link
    We have developed an atom interferometer providing a full inertial base. This device uses two counter-propagating cold-atom clouds that are launched in strongly curved parabolic trajectories. Three single Raman beam pairs, pulsed in time, are successively applied in three orthogonal directions leading to the measurement of the three axis of rotation and acceleration. In this purpose, we introduce a new atom gyroscope using a butterfly geometry. We discuss the present sensitivity and the possible improvements.Comment: submitted to PR

    Measurement of the sensitivity function in time-domain atomic interferometer

    No full text
    submitted to IEEE Trans. Instrum. Meas.We present here an analysis of the sensitivity of a time-domain atomic interferometer to the phase noise of the lasers used to manipulate the atomic wave-packets. The sensitivity function is calculated in the case of a three pulse Mach-Zehnder interferometer, which is the configuration of the two inertial sensors we are building at BNM-SYRTE. We successfully compare this calculation to experimental measurements. The sensitivity of the interferometer is limited by the phase noise of the lasers, as well as by residual vibrations. We evaluate the performance that could be obtained with state of the art quartz oscillators, as well as the impact of the residual phase noise of the phase-lock loop. Requirements on the level of vibrations is derived from the same formalism

    Matter-wave laser Interferometric Gravitation Antenna (MIGA): New perspectives for fundamental physics and geosciences

    Full text link
    The MIGA project aims at demonstrating precision measurements of gravity with cold atom sensors in a large scale instrument and at studying the associated applications in geosciences and fundamental physics. The first stage of the project (2013-2018) will consist in building a 300-meter long optical cavity to interrogate atom interferometers and will be based at the low noise underground laboratory LSBB in Rustrel, France. The second stage of the project (2018-2023) will be dedicated to science runs and data analyses in order to probe the spatio-temporal structure of the local gravity field of the LSBB region, a site of high hydrological interest. MIGA will also assess future potential applications of atom interferometry to gravitational wave detection in the frequency band 0.110\sim 0.1-10 Hz hardly covered by future long baseline optical interferometers. This paper presents the main objectives of the project, the status of the construction of the instrument and the motivation for the applications of MIGA in geosciences. Important results on new atom interferometry techniques developed at SYRTE in the context of MIGA and paving the way to precision gravity measurements are also reported.Comment: Proceedings of the 50th Rencontres de Moriond "100 years after GR", La Thuile (Italy), 21-28 March 2015 - 10 pages, 5 figures, 23 references version2: added references, corrected typo

    High-vacuum-compatible high-power Faraday isolators for gravitational-wave interferometers

    Get PDF
    Faraday isolators play a key role in the operation of large-scale gravitational-wave detectors. Second-generation gravitational-wave interferometers such as the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) and Advanced Virgo will use high-average-power cw lasers (up to 200 W) requiring specially designed Faraday isolators that are immune to the effects resulting from the laser beam absorption–degraded isolation ratio, thermal lensing, and thermally induced beam steering. In this paper, we present a comprehensive study of Faraday isolators designed specifically for high-performance operation in high-power gravitational-wave interferometers

    Performance of a thermally deformable mirror for correction of low-order aberrations in laser beams

    No full text
    The thermally deformable mirror is a device aiming at correcting beam-wavefront distortions for applications where classical mechanical methods are precluded by noise considerations, as in advanced gravitational wave interferometric detectors. This moderately low-cost technology can be easily implemented and controlled thanks to the good reproducibility of the actuation. By using a flexible printed circuit board technology, we demonstrate experimentally that a device of 61 actuators in thermal contact with the back surface of a high-reflective mirror is able to correct the low-order aberrations of a laser beam at 1064 nm and could be used to optimize the mode matching into Fabry-Perot cavities

    Off-resonant Raman transitions impact in an atom interferometer

    No full text
    International audienceWe study the influence of off-resonant two photon transitions on high precision measurements with atom interferometers based on stimulated Raman transitions. These resonances induce a two photon light shift on the resonant Raman condition. The impact of this effect is investigated in two highly sensitive experiments: a gravimeter and a gyroscope-accelerometer. We show that it can lead to significant systematic phase shifts, which have to be taken into account in order to achieve best performances in term of accuracy and stability

    Low noise amplication of an optically carried microwave signal: application to atom interferometry

    Get PDF
    In this paper, we report a new scheme to amplify a microwave signal carried on a laser light at λ\lambda=852nm. The amplification is done via a semiconductor tapered amplifier and this scheme is used to drive stimulated Raman transitions in an atom interferometer. Sideband generation in the amplifier, due to self-phase and amplitude modulation, is investigated and characterized. We also demonstrate that the amplifier does not induce any significant phase-noise on the beating signal. Finally, the degradation of the performances of the interferometer due to the amplification process is shown to be negligible
    corecore