12,233 research outputs found
Geometrical optics analysis of the short-time stability properties of the Einstein evolution equations
Many alternative formulations of Einstein's evolution have lately been
examined, in an effort to discover one which yields slow growth of
constraint-violating errors. In this paper, rather than directly search for
well-behaved formulations, we instead develop analytic tools to discover which
formulations are particularly ill-behaved. Specifically, we examine the growth
of approximate (geometric-optics) solutions, studied only in the future domain
of dependence of the initial data slice (e.g. we study transients). By
evaluating the amplification of transients a given formulation will produce, we
may therefore eliminate from consideration the most pathological formulations
(e.g. those with numerically-unacceptable amplification). This technique has
the potential to provide surprisingly tight constraints on the set of
formulations one can safely apply. To illustrate the application of these
techniques to practical examples, we apply our technique to the 2-parameter
family of evolution equations proposed by Kidder, Scheel, and Teukolsky,
focusing in particular on flat space (in Rindler coordinates) and Schwarzchild
(in Painleve-Gullstrand coordinates).Comment: Submitted to Phys. Rev.
The role of initial conditions in the ageing of the long-range spherical model
The kinetics of the long-range spherical model evolving from various initial
states is studied. In particular, the large-time auto-correlation and -response
functions are obtained, for classes of long-range correlated initial states,
and for magnetized initial states. The ageing exponents can depend on certain
qualitative features of initial states. We explicitly find the conditions for
the system to cross over from ageing classes that depend on initial conditions
to those that do not.Comment: 15 pages; corrected some typo
Observations Outside the Light-Cone: Algorithms for Non-Equilibrium and Thermal States
We apply algorithms based on Lieb-Robinson bounds to simulate time-dependent
and thermal quantities in quantum systems. For time-dependent systems, we
modify a previous mapping to quantum circuits to significantly reduce the
computer resources required. This modification is based on a principle of
"observing" the system outside the light-cone. We apply this method to study
spin relaxation in systems started out of equilibrium with initial conditions
that give rise to very rapid entanglement growth. We also show that it is
possible to approximate time evolution under a local Hamiltonian by a quantum
circuit whose light-cone naturally matches the Lieb-Robinson velocity.
Asymptotically, these modified methods allow a doubling of the system size that
one can obtain compared to direct simulation. We then consider a different
problem of thermal properties of disordered spin chains and use quantum belief
propagation to average over different configurations. We test this algorithm on
one dimensional systems with mixed ferromagnetic and anti-ferromagnetic bonds,
where we can compare to quantum Monte Carlo, and then we apply it to the study
of disordered, frustrated spin systems.Comment: 19 pages, 12 figure
Entanglement entropy of random quantum critical points in one dimension
For quantum critical spin chains without disorder, it is known that the
entanglement of a segment of N>>1 spins with the remainder is logarithmic in N
with a prefactor fixed by the central charge of the associated conformal field
theory. We show that for a class of strongly random quantum spin chains, the
same logarithmic scaling holds for mean entanglement at criticality and defines
a critical entropy equivalent to central charge in the pure case. This
effective central charge is obtained for Heisenberg, XX, and quantum Ising
chains using an analytic real-space renormalization group approach believed to
be asymptotically exact. For these random chains, the effective universal
central charge is characteristic of a universality class and is consistent with
a c-theorem.Comment: 4 pages, 3 figure
Entanglement entropy of two disjoint intervals in c=1 theories
We study the scaling of the Renyi entanglement entropy of two disjoint blocks
of critical lattice models described by conformal field theories with central
charge c=1. We provide the analytic conformal field theory result for the
second order Renyi entropy for a free boson compactified on an orbifold
describing the scaling limit of the Ashkin-Teller (AT) model on the self-dual
line. We have checked this prediction in cluster Monte Carlo simulations of the
classical two dimensional AT model. We have also performed extensive numerical
simulations of the anisotropic Heisenberg quantum spin-chain with tree-tensor
network techniques that allowed to obtain the reduced density matrices of
disjoint blocks of the spin-chain and to check the correctness of the
predictions for Renyi and entanglement entropies from conformal field theory.
In order to match these predictions, we have extrapolated the numerical results
by properly taking into account the corrections induced by the finite length of
the blocks to the leading scaling behavior.Comment: 37 pages, 23 figure
Correlations in an expanding gas of hard-core bosons
We consider a longitudinal expansion of a one-dimensional gas of hard-core
bosons suddenly released from a trap. We show that the broken translational
invariance in the initial state of the system is encoded in correlations
between the bosonic occupation numbers in the momentum space. The correlations
are protected by the integrability and exhibit no relaxation during the
expansion
Critical behavior of two-dimensional cubic and MN models in the five-loop renormalization-group approximation
The critical thermodynamics of the two-dimensional N-vector cubic and MN
models is studied within the field-theoretical renormalization-group (RG)
approach. The beta functions and critical exponents are calculated in the
five-loop approximation and the RG series obtained are resummed using the
Borel-Leroy transformation combined with the generalized Pad\'e approximant and
conformal mapping techniques. For the cubic model, the RG flows for various N
are investigated. For N=2 it is found that the continuous line of fixed points
running from the XY fixed point to the Ising one is well reproduced by the
resummed RG series and an account for the five-loop terms makes the lines of
zeros of both beta functions closer to each another. For the cubic model with
N\geq 3, the five-loop contributions are shown to shift the cubic fixed point,
given by the four-loop approximation, towards the Ising fixed point. This
confirms the idea that the existence of the cubic fixed point in two dimensions
under N>2 is an artifact of the perturbative analysis. For the quenched dilute
O(M) models ( models with N=0) the results are compatible with a stable
pure fixed point for M\geq1. For the MN model with M,N\geq2 all the
non-perturbative results are reproduced. In addition a new stable fixed point
is found for moderate values of M and N.Comment: 26 pages, 3 figure
Pairing, crystallization and string correlations of mass-imbalanced atomic mixtures in one-dimensional optical lattices
We numerically determine the very rich phase diagram of mass-imbalanced
binary mixtures of hardcore bosons (or equivalently -- fermions, or
hardcore-Bose/Fermi mixtures) loaded in one-dimensional optical lattices.
Focusing on commensurate fillings away from half filling, we find a strong
asymmetry between attractive and repulsive interactions. Attraction is found to
always lead to pairing, associated with a spin gap, and to pair crystallization
for very strong mass imbalance. In the repulsive case the two atomic components
remain instead fully gapless over a large parameter range; only a very strong
mass imbalance leads to the opening of a spin gap. The spin-gap phase is the
precursor of a crystalline phase occurring for an even stronger mass imbalance.
The fundamental asymmetry of the phase diagram is at odds with recent
theoretical predictions, and can be tested directly via time-of-flight
experiments on trapped cold atoms.Comment: 4 pages, 4 figures + Supplementary Materia
On entanglement evolution across defects in critical chains
We consider a local quench where two free-fermion half-chains are coupled via
a defect. We show that the logarithmic increase of the entanglement entropy is
governed by the same effective central charge which appears in the ground-state
properties and which is known exactly. For unequal initial filling of the
half-chains, we determine the linear increase of the entanglement entropy.Comment: 11 pages, 5 figures, minor changes, reference adde
Optimal two-qubit gate for generation of random bipartite entanglement
We numerically study protocols consisting of repeated applications of two
qubit gates used for generating random pure states. A necessary number of steps
needed in order to generate states displaying bipartite entanglement typical of
random states is obtained. For generic two qubit entangling gate the decay rate
of purity is found to scale as and therefore of order steps
are necessary to reach random bipartite entanglement. We also numerically
identify the optimal two qubit gate for which the convergence is the fastest.
Perhaps surprisingly, applying the same good two qubit gate in addition to a
random single qubit rotations at each step leads to a faster generation of
entanglement than applying a random two qubit transformation at each step.Comment: 9 pages, 9 PS figures; published versio
- …
