Many alternative formulations of Einstein's evolution have lately been
examined, in an effort to discover one which yields slow growth of
constraint-violating errors. In this paper, rather than directly search for
well-behaved formulations, we instead develop analytic tools to discover which
formulations are particularly ill-behaved. Specifically, we examine the growth
of approximate (geometric-optics) solutions, studied only in the future domain
of dependence of the initial data slice (e.g. we study transients). By
evaluating the amplification of transients a given formulation will produce, we
may therefore eliminate from consideration the most pathological formulations
(e.g. those with numerically-unacceptable amplification). This technique has
the potential to provide surprisingly tight constraints on the set of
formulations one can safely apply. To illustrate the application of these
techniques to practical examples, we apply our technique to the 2-parameter
family of evolution equations proposed by Kidder, Scheel, and Teukolsky,
focusing in particular on flat space (in Rindler coordinates) and Schwarzchild
(in Painleve-Gullstrand coordinates).Comment: Submitted to Phys. Rev.