16,117 research outputs found

    Influence of large deflection and transverse shear on random response of rectangular symmetric composite laminates to acoustic loads

    Get PDF
    Nonlinear equations of motion of symmetrically laminated anisotropic plates are derived accounting for von Karman strains. The effect of transverse shear is included in the formulation and the rotatory inertia effect is ignored. Using a single-mode Galerkin procedure the nonlinear modal equation is obtained. Direct equivalent linearization is employed. The response of acoustic excitation on moderately thick composite panels is studied. Further, the effects of transverse shear on large deflection vibration of laminates under random excitation are studied. Mean-square deflection and mean-square inplane stresses are obtained for some symmetric graphite-epoxy laminates. Using equilibrium equations and the continuity requirements, the mean-square transverse shear stresses are calculated. The results obtained will be useful in the sonic fatigue design of composite aircraft panels. The analysis is presented in detail for simply supported plate. The analogous equations for a clamped case are given in the appendix

    Application of optimization techniques to vehicle design: A review

    Get PDF
    The work that has been done in the last decade or so in the application of optimization techniques to vehicle design is discussed. Much of the work reviewed deals with the design of body or suspension (chassis) components for reduced weight. Also reviewed are studies dealing with system optimization problems for improved functional performance, such as ride or handling. In reviewing the work on the use of optimization techniques, one notes the transition from the rare mention of the methods in the 70's to an increased effort in the early 80's. Efficient and convenient optimization and analysis tools still need to be developed so that they can be regularly applied in the early design stage of the vehicle development cycle to be most effective. Based on the reported applications, an attempt is made to assess the potential for automotive application of optimization techniques. The major issue involved remains the creation of quantifiable means of analysis to be used in vehicle design. The conventional process of vehicle design still contains much experience-based input because it has not yet proven possible to quantify all important constraints. This restraint on the part of the analysis will continue to be a major limiting factor in application of optimization to vehicle design

    Itinerant and local-moment magnetism in EuCr2As2 single crystals

    Full text link
    We report on the crystal structure, physical properties, and electronic structure calculations for the ternary pnictide compound EuCr2As2. X-ray diffraction studies confirmed that EuCr2As2 crystalizes in the ThCr2Si2-type tetragonal structure (space group I4/mmm). The Eu ions are in a stable divalent state in this compound. Eu moments in EuCr2As2 order magnetically below Tm = 21 K. A sharp increase in the magnetic susceptibility below Tm and the positive value of the paramagnetic Curie temperature obtained from the Curie-Weiss fit suggest dominant ferromagnetic interactions. The heat capacity exhibits a sharp {\lambda}-shape anomaly at Tm, confirming the bulk nature of the magnetic transition. The extracted magnetic entropy at the magnetic transition temperature is consistent with the theoretical value Rln(2S+1) for S = 7/2 of the Eu2+ ion. The temperature dependence of the electrical resistivity \r{ho}(T) shows metallic behavior along with an anomaly at 21 K. In addition, we observe a reasonably large negative magneto-resistance (~ -24%) at lower temperature. Electronic structure calculations for EuCr2As2 reveal a moderately high density of states of Cr-3d orbitals at the Fermi energy, indicating that the nonmagnetic state of Cr is unstable against magnetic order. Our density functional calculations for EuCr2As2 predict a G-type AFM order in the Cr sublattice. The electronic structure calculations suggest a weak interlayer coupling of the Eu moments.Comment: 9 pages, 7 figure

    The Effects of Life Expectancy on Fiji's Output: A Time Series Approach from 1970 to 2002

    Get PDF
    Compared to several cross-country studies on the determinants of growth, time series approaches are relatively few and limited in scope. However, time series studies are useful for country-specific policies. But in the recent time series works, with a few exceptions, ad hoc specifications of output and growth equations are used. This paper examines the specification and estimation issues in the time series approach to the determinants of output. Our approach is used to measure the effects of health on the output of Fiji for the period 1970 to 2002.The Solow Growth Model, Production Function, General to Specific Approach, Effects of Health on Output.

    Instability of Rotationally Tuned Dipolar Bose-Einstein Condensates

    Get PDF
    The possibility of effectively inverting the sign of the dipole-dipole interaction, by fast rotation of the dipole polarization, is examined within a harmonically trapped dipolar Bose-Einstein condensate. Our analysis is based on the stationary states in the Thomas-Fermi limit, in the corotating frame, as well as direct numerical simulations in the Thomas-Fermi regime, explicitly accounting for the rotating polarization. The condensate is found to be inherently unstable due to the dynamical instability of collective modes. This ultimately prevents the realization of robust and long-lived rotationally tuned states. Our findings have major implications for experimentally accessing this regime.Comment: 9 pages with 5 figure

    Valence Fluctuation in CeMo2Si2C

    Full text link
    We report on the valence fluctuation of Ce in CeMo2_{2}Si2_{2}C as studied by means of magnetic susceptibility χ(T)\chi(T), specific heat C(T)C(T), electrical resistivity ρ(T)\rho(T) and x-ray absorption spectroscopy. Powder x-ray diffraction revealed that CeMo2_{2}Si2_{2}C crystallizes in CeCr2_{2}Si2_{2}C-type layered tetragonal crystal structure (space group \textit{P4/mmm}). The unit cell volume of CeMo2_{2}Si2_{2}C deviates from the expected lanthanide contraction, indicating non-trivalent state of Ce ions in this compound. The observed weak temperature dependence of the magnetic susceptibility and its low value indicate that Ce ions are in valence fluctuating state. The formal LIIIL_{III} Ce valence in CeMo2_{2}Si2_{2}C = 3.11 as determined from x-ray absorption spectroscopy measurement is well bellow the value \simeq 3.4 in tetravalent Ce compound CeO2_{2}. The temperature dependence of specific heat does not show any anomaly down to 1.8 K which rules out any magnetic ordering in the system. The Sommerfeld coefficient obtained from the specific heat data is γ\gamma = 23.4 mJ/mol\,K2^{2}. The electrical resistivity follows the T2T{^2} behavior in the low temperature range below 35 K confirming a Fermi liquid behavior. Accordingly both the Kadowaki Wood ratio A/γ2A/\gamma^{2} and the Sommerfeld Wilson ratio χ(0)/γ\chi(0)/\gamma are in the range expected for Fermi-liquid systems. In order to get some information on the electronic states, we calculated the band structure within the density functional theory, eventhough this approach is not able to treat 4f electrons accurately. The non-ff electron states crossing the Fermi level have mostly Mo 4d character. They provide the states with which the 4f sates are strongly hybridized, leading to the intermediate valent state.Comment: 18 pages, 10 figures Submitted to Journal of Alloys and Compound

    Load-Settlement Response of Square Footing on Geogrid Reinforced Layered Granular Beds

    Get PDF
    Experimental studies were carried out to obtain the load-settlement response of a model square footing resting on unreinforced and reinforced granular beds. The response was obtained for two cases: (a) geogrid-reinforced sand layer, and (b) geogrid-reinforced layered system consisting of aggregate layer overlying a sand layer. The parameters considered in the experimental study include the thickness of the aggregate layer, the depth of geogrid reinforcement placed in sand layer and in aggregate layer, width of the reinforcement, and relative density of bed. Plate vibrator was used to compact uniform sand beds to relative densities equal to 50 % and 70 % inside large-size test chamber of dimensions equal to 1 m × 1 m × 1 m (in length, in width, and in depth). Load was applied on square footing using a 100 kN capacity actuator in displacement-controlled mode, and the improvement in the load carrying capacity of the footing resting on reinforced sand layer and layered system was quantified in terms of load improvement factors. In addition, the optimum embedment depth and width of reinforcements were proposed for various cases considered in the study. The optimum depth of reinforcement for the case of aggregate layer overlying sand layer decreased to 0.30 times the width of the footing from 0.45 times the width of the footing for sand only case

    CYLINDRICAL PISTON PROBLEM IN WATER

    Get PDF
    A study of compression waves produced in water by thsnon-uniform expansion of a cylindrical piston of non-zero initial radius is made by the artificial viscosity method of von Neumann & Richtmyer. It is found that the damping dect introduced by the cylindrical geometry is much less pronounced than that of the spherical geometry

    A Monopole-Antimonopole Solution of the SU(2) Yang-Mills-Higgs Model

    Get PDF
    As shown by Taubes, in the Bogomol'nyi-Prasad-Sommerfield limit the SU(2) Yang-Mills-Higgs model possesses smooth finite energy solutions, which do not satisfy the first order Bogomol'nyi equations. We construct numerically such a non-Bogomol'nyi solution, corresponding to a monopole-antimonopole pair, and extend the construction to finite Higgs potential.Comment: 11 pages, including 4 eps figures, LaTex format using RevTe
    corecore