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The possibility of effectively inverting the sign of the dipole-dipole interaction, by fast rotation of
the dipole polarization, is examined within a harmonically trapped dipolar Bose-Einstein condensate.
Our analysis is based on the stationary states in the Thomas-Fermi limit, in the corotating frame, as well
as direct numerical simulations in the Thomas-Fermi regime, explicitly accounting for the rotating
polarization. The condensate is found to be inherently unstable due to the dynamical instability of collective
modes. This ultimately prevents the realization of robust and long-lived rotationally tuned states. Our
findings have major implications for experimentally accessing this regime.
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Dipolar Bose-Einstein condensates (BECs) have proved
to be a unique, highly controllable platform for studying the
interplay of quantum many-body physics and magnetic
interactions [1–6]. Compared to conventional condensates,
in which the atoms undergo short-range, contact-like,
isotropic interparticle interactions, a dipolar BEC also enjoys
a long-range anisotropic dipole-dipole interaction (DDI)
[7–11]. While the first dipolar BECs were realized in a
gas of 52Cr [1,2], atoms with larger magnetic dipole
moments such as 164Dy [4,6] and 168Er [5] have now been
cooled to form strongly dipolar BECs. This has led to the
observation of magnetostriction [12], dipole mediated sta-
bility [13,14], anisotropic superfluidity [15], dipolar gap
solitons in 2D free space [16], the roton mode [17–19], and
the discovery of self-bound dipolar droplets [6,20–22].
The net interaction potential, combining the contact

interactions and DDI, is pivotal to both the stability of
the gas and to realize regimes of novel physics. To date,
experimentalists have controlled this potential by exploit-
ing Feshbach resonances to tune the contact interaction,
thereby allowing for DDI-dominated regimes [13,14].
Furthermore it has been suggested that the magnitude
and sign of the DDI can be tuned via rotation of the dipole
moments [23]. Consider a BEC of bosons with magnetic
dipole moment μd, polarized uniformly along an axis êðtÞ,
such that the DDI is

Uddðr; tÞ ¼
Cdd

4π

1 − 3½êðtÞr�2
jrj3 ; ð1Þ

where Cdd ¼ μ0μ
2
d and μ0 is the vacuum permeability. If

êðtÞ rotates about the z axis at a tilt angle φ, the time
averaged DDI over one rotation cycle is [23]

⟪UddðrÞ⟫ ¼ Cdd

4π

�
3cos2φ − 1

2

��
1 − 3ðẑ · rÞ2

jrj3
�
: ð2Þ

Thus, in the rapid-rotation limit, the tilt angle φ may be
used to tune the effective strength of the DDI and in
particular, when cos2 φ > 1=3, the effective DDI strength
becomes negative, corresponding to an unusual “antidipo-
lar” regime in which side-by-side alignment of the dipole
moments is energetically preferred to head-to-tail align-
ments. Subsequent theoretical studies of dipolar BECs in
this regime, which invoked the rotational tuning mecha-
nism by setting Cdd < 0, led to predictions of novel physics
such as molecular bound states in dark solitons [24],
multidimensional dark [25] and bright [26,27] solitons,
stratified turbulence [28], and the roton instability of vortex
lines [29]. In this direction, a recent experimental study
of rotational tuning by Tang et al. [30] has reported a
realization of the antidipolar regime.
In this Letter we revisit rotational tuning of a dipolar

BEC, in a cylindrically symmetric harmonic trap of the
form VTðrÞ ¼ 1

2
mω2⊥ðx2 þ y2 þ γ2z2Þ, and model polari-

zation rotational angular frequencies, Ω, greater than ω⊥.
This rotation is seen to result in an asymmetry of the
condensate about ẑ that is not evident if the DDI due to a
rotating polarization is directly replaced by its time-
averaged counterpart. This asymmetry results in a dynami-
cal instability, similar to those predicted [31–33] and
observed [34,35] for nondipolar condensates in rotating
ellipsoidal traps, that prevents the formation of a dynami-
cally stable rotationally tuned state. This is elucidated via
two distinct approaches, one being based on a semian-
alytical treatment in the Thomas-Fermi (TF) limit, and
the other being time-dependent numerical simulations.
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These results raise major questions over the pursuit of
rotational tuning of dipolar BECs.
As the maximally antidipolar regime occurs for

φ ¼ π=2, we consider the polarizing field ê to be rotating
in the x-y plane at angular frequency Ω, and work in a
reference frame corotating with e such that we may fix
ê ¼ x̂ in this frame. Then, the dipolar condensate order
parameter ψðr; tÞ [36] for bosons of mass m can be
modeled by the dipolar Gross-Pitaevskii equation (DGPE),

iℏ
∂ψ
∂t ¼

�
−
ℏ2∇2

2m
þ VT þ V int þ iℏΩ

�
x
∂
∂y − y

∂
∂x

��
ψ :

ð3Þ
Assuming that the rotation frequency is slow enough that
the dipole moments remain aligned along ê at all times, the
interaction potential V int is specified by [37]

V intðr; tÞ ¼ gjψðr; tÞj2 þ
Z

dr0Uddðr − r0Þjψðr0; tÞj2; ð4Þ

where g ¼ 4πℏ2as=m and as is the bosonic s-wave
scattering length. The DDI strength may be related to as
through a dimensionless ratio ϵdd ¼ Cdd=ð3gÞ.
Previous studies of rotationally tuned dipolar BECs have

involved setting Ω ¼ 0 and replacing Udd with ⟪Udd⟫ in
Eq. (4). To test the validity of this procedure, we solve for
the stationary solutions of Eq. (3), which obey iℏ∂tψ ¼ μψ,
with μ being the condensate’s chemical potential.
We reexpress the order parameter as ψ ¼ ffiffiffi

n
p

expðiSÞ,
where S is the condensate phase and n, the condensate
density, is normalized to the condensate number N viaR
d3rnðrÞ ¼ N. In the TF limit, obtained by neglecting the

zero-point kinetic energy of the condensate [38], the
stationary solutions are of the form

nTFðrÞ ¼ n0

�
1 −

x2

κ2xR2
z
−

y2

κ2yR2
z
−

z2

R2
z

�
: ð5Þ

STFðr; tÞ ¼ αxy − μt=ℏ; ð6Þ

Here n0 ¼ 15N=ð8πκxκyR3
zÞ is the peak density, Ri is the

TF radius of the dipolar BEC along the i axis, and κx ¼
Rx=Rz and κy ¼ Ry=Rz are the condensate aspect ratios,
with respect to ẑ, along x̂ and ŷ, respectively.
The TF stationary solutions are uniquely determined by a

set of consistency relations, whose derivation is presented
in the Supplemental Material [39]. For a given choice of
fγ; ϵdd;Ω;ω⊥g, the consistency relations are given by:

κ2x ¼
1

ζ

�
ω⊥γ
ω̃x

�
2
�
1þ ϵdd

�
9

2
κ3xκyβ200 − 1

��
; ð7Þ

κ2y ¼
1

ζ

�
ω⊥γ
ω̃y

�
2
�
1þ ϵdd

�
3

2
κ3yκxβ110 − 1

��
; ð8Þ

0 ¼ ðαþΩÞ
�
ω̃2
x −

9

2
ϵdd

ω2⊥κxκyγ2

ζ
β200

�

þ ðα − ΩÞ
�
ω̃2
y −

3

2
ϵdd

ω2⊥κxκyγ2

ζ
β110

�
: ð9Þ

Here, α, ω̃x, ω̃y, βijk, and ζ are defined by the following:

α ¼ κ2x − κ2y
κ2x þ κ2y

Ω; ð10Þ

ω̃2
x ¼ ω2⊥ þ α2 − 2αΩ; ω̃2

y ¼ ω2⊥ þ α2 þ 2αΩ; ð11Þ

βijk ¼
Z

∞

0

ðsþ κ2xÞ−i−1
2ðsþ κ2yÞ−j−1

2ðsþ 1Þ−k−1
2ds; ð12Þ

ζ ¼ 1þ ϵdd

�
3

2
κxκyβ101 − 1

�
: ð13Þ

Equation (10) encapsulates the in-plane anisotropy of the
stationary TF density as a function of Ω, with a positive
(negative) α implying that the condensate density is elon-
gated along x̂ (ŷ). Figure 1 shows how α varies with Ω for
[(a) and (b)] various values of ϵdd while fixing γ,
and for [(c) and (d)] various values of γ while fixing ϵdd.
If ϵdd ¼ 0, α ¼ 0 is a valid solution for all Ω. A bifurcation
occurs at Ω ¼ Ωb, with the addition of two new branches,
symmetric about the Ω axis, that exist only for Ωb ≤
Ω < ω⊥. The symmetry about the Ω axis is broken when
ϵdd > 0. Instead, we have α > 0when 0 < Ω < Ωb, and this
branch persists for Ωb ≤ Ω < ω⊥. The bifurcation is now in
the form of two additional α < 0 solutions for Ω ≥ Ωb,
which are simply connected to each other at Ω ¼ Ωb. The
two branches with the highest jαðΩÞj terminate at Ω ¼ ω⊥.
This is characteristic of the TF limit in a rotating frame, with
similar bifurcations occurring in a BEC rotating about the z

FIG. 1. Stationary solutions, as characterized by α, as a function
of Ω: (a) and (b) γ ¼ 1 and various ϵdd; (c) and (d) ϵdd ¼ 0.4 and
various γ. In (b), the γ ¼ 1, ϵdd ¼ 0 branch has α ¼ 0.
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axis with a planar trapping ellipticity, with or without z-
polarized dipoles [31,40,48,49]. This has been attributed to
the Lz ¼ 2 quadrupole mode being energetically unstable
for Ω > Ωb, resulting in Ωbðϵdd ¼ 0Þ ¼ ω⊥=

ffiffiffi
2

p
as dem-

onstrated in Fig. 1(a) [31,50].
It is evident that these rotating-frame solutions tend

towards cylindrical symmetry (α ¼ 0) as Ω → ∞. We
proceed to test whether they agree with the nonrotating
TF stationary solutions found by utilizing the time-
averaged DDI. The latter are exactly symmetric about ẑ
and possess an aspect ratio κk≡κx¼ κy specified via [41,42]

3ϵddκ
2
k

��
1þ γ2

2

�
fðκkÞ
1 − κ2

− 1

�
¼ ðϵdd þ 2Þðγ2 − κ2kÞ; ð14Þ

fðκkÞ ¼
1þ 2κ2k
1 − κ2k

−
3κ2karctanh

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − κ2k

q
ð1 − κ2kÞ3=2

: ð15Þ

We compare this with the true time-averaged condensate
density by transforming Eq. (5) to the laboratory coordinates
and time-averaging over one rotation cycle, yielding the
time-averaged aspect ratio κ⊥ ¼ ffiffiffi

2
p ðκ−2x þ κ−2y Þ−1=2.

Figure 2 compares κ⊥ and κk as a function of ϵdd, with a
range of trapping aspect ratios, γ, being considered and
with κ⊥ evaluated at a suitably high rotation frequency
(Ω ¼ 50ω⊥). An almost perfect agreement between the
two methodologies is evident. Note that when γ ¼ 1, the
condensate is flattened with respect to the z axis, consistent
with an effective side-by-side orientation of z-polarized
dipole moments.
To verify the stationary solutions, Eqs. (7)–(9), we

numerically solve the 3D DGPE for a dipolar BEC of
N ¼ 105 bosons; N is chosen to be sufficiently large for a
meaningful comparison with the TF analysis [38]. With Ω
and γ fixed throughout, our initial condition is the
stationary state for ϵdd ¼ 0 obtained by imaginary time
propagation of the DGPE [43]. In time, ϵdd is slowly
ramped up (at a rate dϵdd=dt ¼ 10−3ω⊥), such that the
condensate can slowly traverse the corresponding
stationary solutions to high adiabaticity. Further details

regarding the simulation are provided in the Supplemental
Material [39].
Figure 3 depicts the density and phase, during a

simulation with fixed Ω ¼ 3ω⊥ and γ ¼ 1, as cross
sections at z ¼ 0 (taken at times when ϵdd ¼ 0.05, 0.15,
and 0.20). For low ϵdd, the condensate is consistent with the
TF stationary solution: the density is smooth and approx-
imates the paraboloid profile of Eq. (5), while the phase
approximates the quadrupolar flow of Eq. (6). However, for
higher ϵdd, the density and phase profiles deviate consid-
erably from this form, first visible through a rippling of the
density being evident (ϵdd ¼ 0.15), which later evolves
towards a fragmented state (ϵdd ¼ 0.2). Figure 4 tracks
this departure from the TF solution by comparing α as
determined from the simulation with that found from
Eqs. (7)–(9). While the agreement is excellent at low
ϵdd, i.e., early time, the numerical value begins to fluctuate
at ϵdd ≈ 0.075. The amplitude of this fluctuation grows with

FIG. 2. Comparison of the solutions for the rapid-rotating
dipoles and time-averaged DDI formalisms. Shown is κ⊥ (lines)
evaluated at Ω ¼ 50ω⊥ and κk (markers), with ϵdd → −ϵdd=2, as
a function of ϵdd and for various trap aspect ratios.

FIG. 3. Simulation of a dipolar BEC during an adiabatic ramp-
up of ϵdd, with N ¼ 105, γ ¼ 1, and Ω ¼ 3ω⊥: cross sections at
z ¼ 0 of density (first row) and phase (second row) at t ¼ 50ω−1⊥
(first column), t ¼ 150ω−1⊥ (second column), and t ¼ 200ω−1⊥
(third column), scaled by l⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðmω⊥Þ
p

. The density is
normalized to n0 ¼ N=l3⊥.

FIG. 4. Comparison between the numerical simulation and the
TF solutions: α as a function of ϵdd at Ω ¼ 3ω⊥ and γ ¼ 1,
determined via Eqs. (7)–(9) (dashed line) and numerical simu-
lation for N ¼ 105 (solid line).
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time, with the numerical solution diverging from the
semianalytical one entirely when ϵdd ≈ 0.17.
The deviation of the numerically determined α from the

semianalytical prediction hints at the unstable growth of
collective modes of the condensate [51]. This motivates us
to return to the TF solutions to study their response to
perturbations by means of linearized perturbation analysis
[32,40,52]. We proceed by writing the time-dependent
density and phase as fluctuations about the respective
stationary state values:

nðr; tÞ ¼ nTFðrÞ þ δnðr; tÞ; ð16Þ

Sðr; tÞ ¼ STFðr; tÞ þ δSðr; tÞ: ð17Þ

These are substituted into Eq. (3), with terms quadratic (or
higher) in the fluctuations being discarded. This results in
an eigenvalue problem of the form [32,33,40,49]

∂
∂t

�
δS

δn

�
¼ L

�
δS

δn

�
; ð18Þ

where the explicit expression for the operator L is specified
in the Supplemental Material [39]. The solutions of Eq. (18)
are collective oscillations, and their respective eigenvalues
obey

�
δSðr; tÞ
δnðr; tÞ

�
≡ eλt

�
δSðrÞ
δnðrÞ

�
∶L

�
δSðrÞ
δnðrÞ

�
¼ λ

�
δSðrÞ
δnðrÞ

�
:

ð19Þ

Examining the spectra of Eq. (19) allows for a qualitative
understanding of the stability of the condensate with respect
to collective modes. If a mode, indexed by i, features
ReðλiÞ > 0, its amplitude grows exponentially and ulti-
mately overwhelms the TF stationary solution. Thus, a
stationary state is dynamically stable only if the real
components of its entire spectrum is negative or zero.
Equation (19) may be diagonalized numerically over

R3 by utilizing a polynomial basis fxpyqzrg for δSðrÞ
and δnðrÞ [32,40]. Fluctuations of order pþ qþ r ¼
0; 1; 2;…, represent monopolar, dipolar, and quadrupolar
modes, respectively, and so on [44]; a rich variety of
collective modes, including breathing and scissors modes,
have been observed in several dipolar BEC experiments
[51]. Due to the inability of a numerical diagonalization
scheme to explore the infinite dimensional space of poly-
nomials, it is necessary to impose a truncation of the form
pþ qþ r ≤ Nmax. However, we note that reducing the
degree of the Hilbert space truncation, i.e., increasingNmax,
does not modify any eigenvalues corresponding to modes
with an order less than Nmax, but merely increases the
dimension of the truncated space of modes available to us.
If, at a given point in parameter space, the diagonalization

of Eq. (19) with respect to fluctuations of order less than
Nmax yields at least one eigenvalue with a positive real
component, it is thus sufficient to claim that the condensate
is dynamically unstable up to linear order in the
fluctuations.
We limit our analysis to the regions of parameter space

explored in Figs. 1 and 4. As several modes might be
unstable at a given point in parameter space, we merely
work with the eigenvalue with the largest positive, real
component, denoted by λ0. Figure 5 plots λ

1=4
0 as a function

of both ϵdd and Ω, with the inset demonstrating how λ0
behaves for the parameter space explored in the DGPE
simulation via a cross section at fixed Ω ¼ 3ω⊥.
As ϵdd → 1, more regions of parameter space become

dynamically unstable to collective modes of polynomial
order less than 14. In addition, the region that remains
stable against these modes becomes smaller for larger Ω.
The inset shows that for all nonzero ϵdd (withΩ ¼ 3ω⊥ and
γ ¼ 1) the corresponding TF stationary solutions suffer
dynamical instabilities, with the corresponding values of λ0
growing as ϵdd → 1. We also note that the amplitude of a
mode corresponding to a real, positive eigenvalue λ0,
increases with an associated exponential timescale of
Ω=ð2πλ0Þ rotation cycles. For ϵdd ¼ 0.1, we find that
λ0 ≈ 0.05, suggesting that the exponential timescale for
amplitude growth is approximately 10 rotation cycles.
For current experimental scenarios involving strongly
dipolar species such as 164Dy, a Feshbach resonance is
generally utilized to tune ϵdd to be slightly lower than 1

FIG. 5. Dynamical instability of the TF stationary states:
ffiffiffiffiffi
λ0

4
p

as a function of Ω and ϵdd with γ ¼ 1 and Nmax ¼ 13. The
prevalence of real, positive eigenvalues for ϵdd > 0 indicates
the existence of a dynamical instability. Note that black corre-
sponds to

ffiffiffiffiffi
λ0

4
p ¼ 0. The inset takes a cross section at Ω ¼ 3ω⊥,

corresponding to Figs. 3 and 4, and plots λ0, showing that
λ0 > 0 ∀ ϵdd > 0.
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[4,6]. Figure 5 shows that for Ω=ω⊥ ¼ 6 the dynamical
instability manifests itself over a timescale of 1=ω⊥ in a
cylindrically symmetric trap. Decreasing Ω increases the
timescale for manifestation of the instability.
Our method does not allow for direct modeling of the

experimental report of rotationally tuned dipolar BECs by
Tang et al. [30], since the relevant trap is not cylindrically
symmetric. This would preclude the existence of sta-
tionary states in the rotating frame, which form the basis
of our analysis. However, our formalism does describe a
dipolar BEC in a cylindrically symmetric harmonic trap,
with the radial trapping frequency matching the average
x-y trapping frequency of that experiment. Therefore, we
expect that accounting for the trapping ellipticity in the
x-y plane would amount to a correction to the results
obtained via our formalism. In this approximation, the
timescale of the experiment is of the order of the typical
timescale that we predict for the onset of the instability
which, consequently, may not have fully manifested itself
during the experimental observations. Nevertheless, the
enhanced dissipation observed in the experiment may be
linked to the onset of this instability and thus warrants
further study. We also note that the considerable deviation
from the theoretically predicted TF aspect ratio in the
time-of-flight measurement for φ ¼ π=2, the angle
explored in our study, may be due to the presence of
the instability.
In this Letter, we have examined the rotational tuning of

harmonically trapped dipolar BECs, explicitly accounting
for the rotation of the dipole polarization. This is performed
by a semianalytical formalism for obtaining the TF sta-
tionary states of a dipolar BEC, validated through dGPE
simulations. In the high-rotation frequency limit, the
solutions converge to those of a dipolar BEC with a static
time-averaged DDI potential, as previously predicted.
Crucially, however, these solutions are dynamically unsta-
ble, with collective oscillations growing exponentially from
perturbations. This prevents the formation of a stable long-
lived rotationally tuned BEC. Our findings are of impor-
tance to the large body of theoretical work which has
considered the rotationally tuned regime by assuming the
robustness of the gas with the time-averaged DDI. They
also suggest that experiments seeking to realize rotational
tuning states must be carefully designed to avoid the
seeding of instabilities and further DGPE studies should
be carried out where the TF regime is not applicable.
Finally, the TF formalism presented in this Letter may be
generalized to account for an alignment of the dipoles at an
arbitrary angle, φ, to the rotation axis.

S. B. P. is supported by an Australian Government
Research Training Program Scholarship and by the
University of Melbourne. A. M.M. would like to thank
the Institute of Advanced Study (Durham University, UK)
for hosting him during the initial stages of developing this
collaborative research project and the Australian Research

Council (Grant No. LE180100142) for support. T. B. and
N. G. P. thank the Engineering and Physical Sciences
Research Council of the UK (Grant No. EP/M005127/1)
for support.

[1] A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau,
Phys. Rev. Lett. 94, 160401 (2005).

[2] Q. Beaufils, R. Chicireanu, T. Zanon, B. Laburthe-Tolra, E.
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