49 research outputs found

    Amine reactivity with charged sulfuric acid clusters

    Get PDF
    The distribution of charged species produced by electrospray of an ammonium sulfate solution in both positive and negative polarities is examined using Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). Positively-charged ammonium bisulfate cluster composition differs significantly from negatively-charged cluster composition. For positively-charged clusters all sulfuric acid is neutralized to bisulfate, whereas for negatively-charged clusters the degree of sulfuric acid neutralization is cluster size-dependent. With increasing cluster size (and, therefore, a decreasing role of charge), both positively- and negatively-charged cluster compositions converge toward ammonium bisulfate. The reactivity of negatively-charged sulfuric acid-ammonia clusters with dimethylamine and ammonia is also investigated by FTICR-MS. Two series of negatively-charged clusters are investigated: [(HSO<sub>4</sub>)(H<sub>2</sub>SO<sub>4</sub>)<sub>x</sub>]<sup>−</sup> and [(NH<sub>4</sub>)<sub>x</sub>(HSO<sub>4</sub>)<sub>x+1</sub>(H<sub>2</sub>SO<sub>4</sub>)<sub>3</sub>]<sup>−</sup>. Dimethylamine substitution for ammonia in [(NH<sub>4</sub>)<sub> x</sub>(HSO<sub>4</sub>)<sub> x+1</sub>(H<sub>2</sub>SO<sub>4</sub>)<sub>3</sub>]<sup>−</sup> clusters is nearly collision-limited, and subsequent addition of dimethylamine to neutralize H<sub>2</sub>SO<sub>4</sub> to bisulfate is within one order of magnitude of the substitution rate. Dimethylamine addition to [(HSO<sub>4</sub>) (H<sub>2</sub>SO<sub>4</sub>)<sub> x</sub>]<sup>−</sup> clusters is either not observed or very slow. The results of this study indicate that amine chemistry will be evident and important only in large ambient negative ions (><i>m/z</i> 400), whereas amine chemistry may be evident in small ambient positive ions. Addition of ammonia to unneutralized clusters occurs at a rate that is ~2–3 orders of magnitude slower than incorporation of dimethylamine either by substitution or addition. Therefore, in locations where amine levels are within a few orders of magnitude of ammonia levels, amine chemistry may compete favorably with ammonia chemistry

    Identification and quantification of particle growth channels during new particle formation

    Get PDF
    Atmospheric new particle formation (NPF) is a key source of ambient ultrafine particles that may contribute substantially to the global production of cloud condensation nuclei (CCN). While NPF is driven by atmospheric nucleation, its impact on CCN concentration depends strongly on atmospheric growth mechanisms since the growth rate must exceed the loss rate due to scavenging in order for the particles to reach the CCN size range. In this work, chemical composition measurements of 20 nm diameter particles during NPF in Hyytiälä, Finland, in March–April 2011 permit identification and quantitative assessment of important growth channels. In this work we show the following: (A) sulfuric acid, a key species associated with atmospheric nucleation, accounts for less than half of particle mass growth during this time period; (B) the sulfate content of a growing particle during NPF is quantitatively explained by condensation of gas-phase sulfuric acid molecules (i.e., sulfuric acid uptake is collision-limited); (C) sulfuric acid condensation substantially impacts the chemical composition of preexisting nanoparticles before new particles have grown to a size sufficient to be measured; (D) ammonium and sulfate concentrations are highly correlated, indicating that ammonia uptake is driven by sulfuric acid uptake; (E) sulfate neutralization by ammonium does not reach the predicted thermodynamic end point, suggesting that a barrier exists for ammonia uptake; (F) carbonaceous matter accounts for more than half of the particle mass growth, and its oxygen-to-carbon ratio (~ 0.5) is characteristic of freshly formed secondary organic aerosol; and (G) differences in the overall growth rate from one formation event to another are caused by variations in the growth rates of all major chemical species, not just one individual species

    Mineral dust photochemistry induces nucleation events in the presence of SO2

    Full text link
    Large quantities of mineral dust particles are frequently ejected into the atmosphere through the action of wind. The surface of dust particles acts as a sink for many gases, such as sulfur dioxide. It is well known that under most conditions, sulfur dioxide reacts on dust particle surfaces, leading to the production of sulfate ions. In this report, for specific atmospheric conditions, we provide evidence for an alternate pathway in which a series of reactions under solar UV light produces first gaseous sulfuric acid as an intermediate product before surface-bound sulfate. Metal oxides present in mineral dust act as atmospheric photocatalysts promoting the formation of gaseous OH radicals, which initiate the conversion of SO(2) to H(2)SO(4) in the vicinity of dust particles. Under low dust conditions, this process may lead to nucleation events in the atmosphere. The laboratory findings are supported by recent field observations near Beijing, China, and Lyon, France

    A complete parameterisation of the relative humidity and wavelength dependence of the refractive index of hygroscopic inorganic aerosol particles

    Get PDF
    Calculations of aerosol radiative forcing require knowledge of wavelength-dependent aerosol optical properties, such as single-scattering albedo. These aerosol optical properties can be calculated using Mie theory from knowledge of the key microphysical properties of particle size and refractive index, assuming that atmospheric particles are well-approximated to be spherical and homogeneous. We provide refractive index determinations for aqueous aerosol particles containing the key atmospherically relevant inorganic solutes of NaCl, NaNO3, (NH4)2SO4, NH4HSO4 and Na2SO4, reporting the refractive index variation with both wavelength (400–650 nm) and relative humidity (from 100 % to the efflorescence value of the salt). The accurate and precise retrieval of refractive index is performed using single-particle cavity ring-down spectroscopy. This approach involves probing a single aerosol particle confined in a Bessel laser beam optical trap through a combination of extinction measurements using cavity ring-down spectroscopy and elastic light-scattering measurements. Further, we assess the accuracy of these refractive index measurements, comparing our data with previously reported data sets from different measurement techniques but at a single wavelength. Finally, we provide a Cauchy dispersion model that parameterises refractive index measurements in terms of both wavelength and relative humidity. Our parameterisations should provide useful information to researchers requiring an accurate and comprehensive treatment of the wavelength and relative humidity dependence of refractive index for the inorganic component of atmospheric aerosol

    Comparing aerosol number and mass exhalation rates from children and adults during breathing, speaking and singing

    Get PDF
    Aerosol particles of respirable size are exhaled when individuals breathe, speak and sing and can transmit respiratory pathogens between infected and susceptible individuals. The COVID-19 pandemic has brought into focus the need to improve the quantification of the particle number and mass exhalation rates as one route to provide estimates of viral shedding and the potential risk of transmission of viruses. Most previous studies have reported the number and mass concentrations of aerosol particles in an exhaled plume. We provide a robust assessment of the absolute particle number and mass exhalation rates from measurements of minute ventilation using a non-invasive Vyntus Hans Rudolf mask kit with straps housing a rotating vane spirometer along with measurements of the exhaled particle number concentrations and size distributions. Specifically, we report comparisons of the number and mass exhalation rates for children (12–14 years old) and adults (19–72 years old) when breathing, speaking and singing, which indicate that child and adult cohorts generate similar amounts of aerosol when performing the same activity. Mass exhalation rates are typically 0.002–0.02 ng s−1 from breathing, 0.07–0.2 ng s−1 from speaking (at 70–80 dBA) and 0.1–0.7 ng s−1 from singing (at 70–80 dBA). The aerosol exhalation rate increases with increasing sound volume for both children and adults when both speaking and singing

    A quantitative evaluation of aerosol generation during cardiopulmonary resuscitation

    Get PDF
    Summary: It is unclear if cardiopulmonary resuscitation is an aerosol‐generating procedure and whether this poses a risk of airborne disease transmission to healthcare workers and bystanders. Use of airborne transmission precautions during cardiopulmonary resuscitation may confer rescuer protection but risks patient harm due to delays in commencing treatment. To quantify the risk of respiratory aerosol generation during cardiopulmonary resuscitation in humans, we conducted an aerosol monitoring study during out‐of‐hospital cardiac arrests. Exhaled aerosol was recorded using an optical particle sizer spectrometer connected to the breathing system. Aerosol produced during resuscitation was compared with that produced by control participants under general anaesthesia ventilated with an equivalent respiratory pattern to cardiopulmonary resuscitation. A porcine cardiac arrest model was used to determine the independent contributions of ventilatory breaths, chest compressions and external cardiac defibrillation to aerosol generation. Time‐series analysis of participants with cardiac arrest (n = 18) demonstrated a repeating waveform of respiratory aerosol that mapped to specific components of resuscitation. Very high peak aerosol concentrations were generated during ventilation of participants with cardiac arrest with median (IQR [range]) 17,926 (5546–59,209 [1523–242,648]) particles.l‐1, which were 24‐fold greater than in control participants under general anaesthesia (744 (309–2106 [23–9099]) particles.l‐1, p < 0.001, n = 16). A substantial rise in aerosol also occurred with cardiac defibrillation and chest compressions. In a complimentary porcine model of cardiac arrest, aerosol recordings showed a strikingly similar profile to the human data. Time‐averaged aerosol concentrations during ventilation were approximately 270‐fold higher than before cardiac arrest (19,410 (2307–41,017 [104–136,025]) vs. 72 (41–136 [23–268]) particles.l‐1, p = 0.008). The porcine model also confirmed that both defibrillation and chest compressions generate high concentrations of aerosol independent of, but synergistic with, ventilation. In conclusion, multiple components of cardiopulmonary resuscitation generate high concentrations of respiratory aerosol. We recommend that airborne transmission precautions are warranted in the setting of high‐risk pathogens, until the airway is secured with an airway device and breathing system with a filter

    The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges

    Full text link

    Amine exchange into ammonium bisulfate and ammonium nitrate nuclei

    No full text
    The exchange kinetics and thermodynamics of amines for ammonia in small (1–2 nm diameter) ammonium bisulfate and ammonium nitrate clusters were investigated using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Ammonium salt clusters were reacted with amine gas at constant pressure to determine the kinetics of exchange. The reverse reactions, where aminium salt clusters reacted with ammonia gas, were also studied, and no substitution of ammonia for amine was observed. Gibbs free energy changes for these substitutions were determined to be highly exothermic, &amp;minus;7 kJ/mol or more negative in all cases. Uptake coefficients (reaction probabilities) were found to be near unity, implying that complete exchange of ammonia in small clusters by amine would be expected to occur within several seconds to minutes in the ambient atmosphere. These results suggest that if salt clusters are a component of the sub-3 nm cluster pool, they are likely to be aminium salts rather than ammonium salts, even if they were initially formed as ammonium salts
    corecore