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Abstract. Atmospheric new particle formation (NPF) is a
key source of ambient ultrafine particles that may contribute
substantially to the global production of cloud condensation
nuclei (CCN). While NPF is driven by atmospheric nucle-
ation, its impact on CCN concentration depends strongly on
atmospheric growth mechanisms since the growth rate must
exceed the loss rate due to scavenging in order for the parti-
cles to reach the CCN size range. In this work, chemical com-
position measurements of 20 nm diameter particles during
NPF in Hyytiälä, Finland, in March–April 2011 permit iden-
tification and quantitative assessment of important growth
channels. In this work we show the following: (A) sulfuric
acid, a key species associated with atmospheric nucleation,
accounts for less than half of particle mass growth during
this time period; (B) the sulfate content of a growing parti-
cle during NPF is quantitatively explained by condensation
of gas-phase sulfuric acid molecules (i.e., sulfuric acid up-
take is collision-limited); (C) sulfuric acid condensation sub-
stantially impacts the chemical composition of preexisting
nanoparticles before new particles have grown to a size suffi-
cient to be measured; (D) ammonium and sulfate concentra-
tions are highly correlated, indicating that ammonia uptake
is driven by sulfuric acid uptake; (E) sulfate neutralization
by ammonium does not reach the predicted thermodynamic
end point, suggesting that a barrier exists for ammonia up-
take; (F) carbonaceous matter accounts for more than half
of the particle mass growth, and its oxygen-to-carbon ratio

(∼ 0.5) is characteristic of freshly formed secondary organic
aerosol; and (G) differences in the overall growth rate from
one formation event to another are caused by variations in
the growth rates of all major chemical species, not just one
individual species.

1 Introduction

Atmospheric new particle formation (NPF), the process
whereby gaseous precursors nucleate to form clusters on the
order of one nanometer and then grow rapidly to larger sizes,
can significantly impact cloud condensation nuclei (CCN)
levels (Kerminen et al., 2005; Kuang et al., 2010; Merikanto
et al., 2009) and thereby influence precipitation patterns
(Lee and Feingold, 2010) and climate (Rosenfeld et al.,
2008) through changing cloud albedo (Charlson et al., 1992;
Lohmann and Feichter, 2005). With respect to human health,
NPF produces a large number of nanoparticles, and be-
cause of their small size they can deposit throughout the
respiratory tract or enter the bloodstream (Oberdörster et
al., 2005). Exposure to elevated nanoparticle concentrations
is associated with higher incidences of adverse cardiopul-
monary effects (Gong et al., 2008; Knibbs et al., 2011;
Maudgalya et al., 2008). In urban environments, nanopar-
ticles arising from secondary sources can account for over
50 % of the nanoparticle number concentration (Klems et
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al., 2011). Anthropogenic pollution has been suggested to
enhance the formation of nanoparticles over forested envi-
ronments (Zhang et al., 2009). Despite the importance of
nanoparticles to climate and human health, the exact mech-
anisms governing NPF are poorly understood (Bzdek and
Johnston, 2010; Kulmala et al., 2004).

Atmospheric NPF is a two-step process involving (1) the
nucleation of small particles or clusters at a critical size and
(2) spontaneous growth of the critical nucleus to larger sizes
(Kulmala et al., 2000; Zhang et al., 2012; Kulmala et al.,
2013). Much effort has been devoted to understanding the at-
mospheric nucleation process. Nucleation is thought to occur
mainly by the formation of uncharged clusters in the atmo-
sphere (Kulmala et al., 2007) and involves sulfuric acid (Sip-
ila et al., 2010; Young et al., 2008; Weber et al., 1997), water,
ammonia (Ball et al., 1999; Benson et al., 2009; Korhonen et
al., 1999), amines (Berndt et al., 2010; Yu et al., 2012; Zoll-
ner et al., 2012) and possibly organic condensable species
(Metzger et al., 2010) such as organic acids (R. Y. Zhang et
al., 2004; Hou et al., 2013). Indeed, organic species such as
amines are likely involved during nucleation, as sulfuric acid
and ammonia are insufficient to explain nucleation (Kirkby
et al., 2011). Nonetheless, sulfuric acid appears to be the key
chemical component, as the nucleation rate in both labora-
tory and field measurements frequently depends on the sul-
furic acid concentration (Kuang et al., 2008; Metzger et al.,
2010; Nieminen et al., 2009).

While much progress has been made in understanding
the mechanisms underlying nucleation, the chemical mecha-
nisms governing particle growth are less certain (Riipinen et
al., 2012). For a nucleated nanoparticle to become climat-
ically relevant, it must grow at a rate that is much higher
than the rate at which it is lost due to scavenging (Riipinen
et al., 2007; Kuang et al., 2010). It has been shown that ex-
pected growth rates based on gas-phase sulfuric acid concen-
trations usually do not match measured growth rates during
ambient NPF, suggesting that other chemical species con-
tribute to growth (Kuang et al., 2010; Smith et al., 2008;
Stolzenburg et al., 2005). Chemical composition measure-
ments in the 10–30 nm size range have implicated a variety of
molecular species including sulfate, nitrate, ammonium and
organics (Smith et al., 2005, 2008, 2010). Several potential
growth channels have been suggested, including growth by
aminium salts (Barsanti et al., 2009; Smith et al., 2010; Wang
et al., 2010a, b) and by organic matter (Donahue et al., 2011;
Monge et al., 2012; Perraud et al., 2012).

However, the extent to which other chemical species con-
tribute to growth is not known, in part because few instru-
ments can provide quantitative chemical composition mea-
surements in the nanoparticle size regime (Bzdek et al.,
2012a). This work utilizes the Nano Aerosol Mass Spec-
trometer (NAMS), a single particle mass spectrometer that
provides a quantitative measure of particle composition in
the 10–30 nm size range (Wang and Johnston, 2006; Wang
et al., 2006; Pennington and Johnston, 2012) to determine

quantitatively the contributions of certain chemical species
to particle growth during NPF in a remote boreal forest en-
vironment. A quantitative understanding of the contributions
of various chemical species to particle growth is necessary in
order to assess the impact of NPF on CCN levels and climate
accurately.

2 Methods

2.1 Instrumentation

Data presented in this work were obtained with the Nano
Aerosol Mass Spectrometer (NAMS). Ambient air was sam-
pled to NAMS from a height of∼ 4 m through a 1.27 cm
(O.D.) length of copper tubing at a flow rate of 5 L min−1.

NAMS has been described in detail elsewhere (Wang et
al., 2006; Wang and Johnston, 2006; Pennington and John-
ston, 2012). It consists of six main components: a unipolar
charger (Chen and Pui, 1999; McMurry et al., 2009), an aero-
dynamic lens assembly, a digital ion guide (DIG), a digital
ion trap (DIT), Nd:YAG laser and a reflectron time-of-flight
(TOF) mass analyzer. Aerosol first passes through the unipo-
lar charger to maximize the fraction of particles that receive a
+1 charge and then is sampled into the instrument where par-
ticles are collimated and focused with the aerodynamic lens
and DIG. Particles are then captured inside the DIT where
they are irradiated with a high-energy laser pulse (532 nm,
200 mJ pulse−1, focused to a spot < 100 µm). The laser pulse
forms a plasma that completely disintegrates the particle to
form multiply charged atomic ions. The ions are mass ana-
lyzed by TOF.

Particle size selection in NAMS is accomplished by selec-
tive trapping inside the DIT on the basis of mass-to-charge
ratio, which can be related to mass normalized diameter
(dmn), defined as the diameter of a spherical particle having
unit density and the same mass-to-charge ratio as the particle
being trapped. For these measurements, NAMS was operated
to trap 18± 3 nm particles (DIT ring electrode frequency of
10 kHz and amplitude of+504 V/−507 V). Other relevant
parameters are DIG frequency of 50 kHz and amplitude of
±500 V, field adjusting lens voltage of−400 V and einzel
lens voltage of−50 V (Pennington and Johnston, 2012). The
relationship between mass normalized diameter (size selec-
tion in NAMS) and mobility diameter (dm; size measurement
with the differential mobility particle sizer, DMPS) is de-
scribed by

dmn = dm

(
ρ

ρ0

)1/3

, (1)

where the reference density,ρ0, is 1 g cm−3. Since carbona-
ceous matter is the major component of particles in Hyytiälä,
the ambient particle density was likely on the order of
1.3 g cm−3 (Kuwata et al., 2011) meaning thatdmn anddm
differed by less than 10 % (dmn larger).
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Particle mass spectra consisted of a series of multiply
charged atomic ions. Raw spectra were baseline-corrected
and the signal intensities integrated over the relevant atomic
ions for carbon (C), nitrogen (N), oxygen (O) and sulfur
(S) so that the mole fractions of each element in the parti-
cle are determined. Note that NAMS does not quantitatively
measure the hydrogen content, so it is not included in mole
fraction determination. Deconvolution of overlapping signal
intensities (C+3 and O+4; S+4 and O+2) was accomplished
by the method of Zordan et al. (2010). After deconvolution,
the signal intensities for each element were summed, and the
relative values were taken as the mole fraction of each ele-
ment in the particle. Mole fractions were averaged over all
particles analyzed in a 10 min time block corresponding to
the DMPS scanning period. If fewer than 20 particles were
analyzed, then averaging was performed over multiple time
blocks until a minimum of 20 particles was achieved. Per-
forming 20-particle averages simultaneously minimizes ran-
dom error from non-uniform plasma energetics while maxi-
mizing time resolution (Klems and Johnston, 2013). Averag-
ing over multiple time blocks was needed only during peri-
ods of very low particle number concentration, which gener-
ally occurred at night. In general, elemental mole fractions
are measured with NAMS to within±10 % of the true values
(Zordan et al., 2010). Mass fractions of molecular species are
determined by combining the appropriate number of atoms
(e.g., S+ 4 O for sulfate) and converting from elemental
mole fraction to elemental mass fraction.

Qualitative measurements of nanoparticle molecular com-
position were performed with a thermal desorption chemi-
cal ionization mass spectrometer (TDCIMS) (Smith et al.,
2010). Composition measurements of accumulation mode
particles were performed with the Aerodyne aerosol mass
spectrometer (AMS) (DeCarlo et al., 2006).

2.2 Calculation of effective gas-phase sulfuric acid
concentration from measured sulfate mass fraction

The effective sulfuric acid gas-phase concentration can be
calculated from the measured particle-phase mass fraction of
sulfate by

[H2SO4]NAMS=
2GRMEAS

ν1c̄10m
×

ρparticle

ρsulfate
, (2)

where GRMEAS is the measured growth rate,ν1 the volume
occupied by a hydrated H2SO4 molecule,c̄1 the mean ther-
mal speed of the condensing monomer (Kuang et al., 2010),
ρparticle the density of ambient particles during the time pe-
riod of interest (estimated to be 1.3 g cm−3) (Kuwata et al.,
2011),ρsulfate the density of condensed phase sulfuric acid
(1.8 g cm−3), and0m =

1
MFsulfate

, where MFsulfate is the av-
erage sulfate mass fraction for the time period of interest
(Bzdek et al., 2012b). Equation (2) does not include the
Fuchs–Sutugin correction for mass flux. Although in some
circumstances the magnitude of this correction can be sub-

stantial (Nieminen et al., 2010), in the particle size range
considered here it would affect the calculated sulfuric acid
concentration by < 5 %, which is much smaller than the un-
certainty of the experimental measurements. Equation (2) is
only applicable for determination of the gas-phase sulfuric
acid concentration when there is a growing mode diameter.
Note that since0m is determined from an average composi-
tion measurement, it accounts for all growth and evaporation
processes that occur in the particle phase over the averaging
period.

3 Results and discussion

In this study, NAMS (Wang and Johnston, 2006; Zordan et
al., 2008, 2010; Bzdek et al., 2011, 2012b, 2013b; Penning-
ton and Johnston, 2012; Pennington et al., 2012; Wang et al.,
2006) is used to obtain single particle mass spectra during
NPF in Hyytiälä, Finland, from 21 March through 24 April
2011. NAMS provides a quantitative measure of nanoparticle
elemental composition and in this study was set to analyze
particles between 15 and 22 nm in diameter. The elemental
composition allows the mass fractions of sulfate, ammonium
and carbonaceous matter to be determined. Example particle
formation events are shown in Fig. 1.

Figure 1a shows particle size distributions from 3 to
100 nm over two consecutive days where NPF was observed,
18 and 19 April 2011. HYSPLIT (Draxler and Rolph, 2013)
back trajectories indicate that air masses during this time pe-
riod were relatively pollution-free, coming from the north-
west. Solar irradiance is shown in Fig. 1b along with the
NAMS hit rate (number of particles analyzed per 10 min pe-
riod), which gives a qualitative measure of the particle num-
ber concentration within the size range analyzed. Both events
were initiated during the daylight hours. On the first day, the
particle growth rate was relatively slow and the mode diame-
ter of the particle size distribution reached the NAMS size
range near dusk. On the second day, the growth rate was
faster and the mode diameter passed completely through the
NAMS size range during the day.

Figure 1c shows the average elemental composition of 15–
22 nm diameter particles as a function of time. The predomi-
nant elements in these particles are carbon, nitrogen, oxygen
and sulfur. The carbon mole fraction is anti-correlated with
the other elements, which has been observed in urban loca-
tions as well (Pennington et al., 2012; Klems et al., 2012).
This anti-correlation arises because carbon is associated with
organic species in the particle, whereas nitrogen and sul-
fur are associated with inorganic components of the parti-
cle (e.g., sulfate, ammonium and possibly nitrate). During
NPF, the sulfur and nitrogen mole fractions are larger and
the carbon mole fraction is smaller than immediately before
or after each event. A similar dependence of elemental mole
fraction was noted previously for NPF in other locations
(Bzdek et al., 2011, 2012b). Note, however, that whereas the
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a)

b)

c)

d)

Fig. 1. (a) Particle size distributions for 18 and 19 April 2011.
Yellow dashed lines indicate approximate size range analyzed
by NAMS. (b) Observed NAMS hit rate (particles analyzed per
10 min period; black) and solar irradiation (yellow).(c) Elemen-
tal mole fractions measured by NAMS, averaged over 10 min peri-
ods; plots were subjected to 10-point boxcar smoothing.(d) NAMS-
measured sulfur mole fraction (red) and nitrogen mole fraction
(blue) and CIMS-measured gas-phase sulfuric acid concentration
(yellow-green). Mole fraction plots were subjected to 10-point box-
car smoothing.

relativeconcentrations of S and C are anti-correlated, theab-
soluteamounts of particulate S and C both increase substan-
tially during NPF because there is a substantial increase in
nanoparticle mass. A remarkable feature of Fig. 1c is that
the change in elemental composition occurs at the onset of
NPFbeforethe mode diameter reaches the NAMS size range.
This characteristic is shown in more detail in Fig. 1d, where
the N and S mole fractions are plotted as a function of time.
Also shown for reference in Fig. 1d is the gas-phase sulfuric
acid concentration measured with a chemical ionization mass
spectrometer (CIMS) (Eisele and Tanner, 1993; Petäjä et al.,
2009), which closely follows solar irradiance. At the onset
of NPF (defined here as the time when the gas-phase sulfu-
ric acid concentration quickly increases), the particle-phase
sulfur mole fraction increases almost simultaneously with
the gas-phase sulfuric acid concentration. This observation
is noteworthy for two reasons. First, it quantifies the change
in composition of the condensational sink that results from
changing gas-phase concentrations at the onset of NPF. Sec-

ond, it shows how changes in nanoparticle chemical compo-
sition do not necessarily coincide with changes in nanoparti-
cle mass or number concentration. Near the end of the event,
both gas-phase sulfuric acid and particle-phase sulfur mole
fraction decrease, but the change in particle composition lags
the change in gas-phase concentration by 3–4 h. This slow
decline in particle-phase sulfur after gas-phase sulfuric acid
declines suggests the event is a regional event rather than a
local (plume) event. These observations are consistent with
recent measurements of NPF at a rural/coastal site (Bzdek et
al., 2013b).

It is reasonable to assume all of the sulfur in these parti-
cles exists in the form of sulfate (Bzdek et al., 2012b). First,
off-line and on-line molecular composition analyses of col-
lected ultrafine particles in this location show sulfate as a
major constituent in nanoparticles, with little to no contribu-
tion from other sulfur-containing species (Smith et al., 2010).
Second, although organosulfates have been detected in 50–
100 nm diameter particles in some environments (Hatch et
al., 2011), quantitative measurement of its contribution to
sub-100 nm particles shows that it is low (Lukács et al.,
2009). Moreover, if organosulfates are present in these parti-
cles, they are probably the result of aqueous-phase secondary
processing of sulfate already contained in the particle and
would be most significant during nighttime, rather than dur-
ing daytime when the increase in sulfur mole fraction occurs.
Even if organosulfates exist in the particle, assigning sulfur
from an organosulfate to inorganic sulfate will give a correct
measure of total sulfate. Finally, S(IV) compounds such as
dissolved SO2, bisulfite and sulfite, which may be significant
in large particles such as cloud and fog droplets (Finlayson-
Pitts and Pitts, 2000) or mineral dust (Higashi and Takahashi,
2009; Usher et al., 2003), are unlikely to constitute a signifi-
cant fraction of sulfur species in ultrafine aerosol (Kerminen
et al., 2000).

With the assumption that all sulfur in these particles can
be assigned to sulfate, the sulfate mass fraction can be quan-
titatively determined from the sulfur mole fraction and com-
pared to the measured ambient sulfuric acid concentration.
At the onset of NPF each day, the sulfate mass fraction rises
quickly from around 5 % to 30 %, which corresponds to an
increase of the sulfur mole fraction from∼ 0.01 to 0.04 (see
Fig. 1d). If a preexisting particle at 20 nm containing a sulfate
mass fraction of 5 % grows by sulfuric acid condensation at
the measured ambient concentration level, it would take < 3 h
to increase the sulfate mass fraction from 5 % to 30 %, which
is within the approximate time period for which this change
occurs. (Note that the change in particle size for this level
of sulfate mass growth would be about 2 nm, so the growing
particle would remain within the NAMS size range.) There-
fore, sulfuric acid condensation is a reasonable explanation
for the rapid rise in sulfur mole fraction each day. A corollary
to this conclusion is that the condensation rate of other chem-
ical species (e.g., carbonaceous matter) during this time pe-
riod early in the event must be small relative to sulfuric acid
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Table 1. Particle growth rate (measured over the period of growth
from 10–20 nm diameter), sulfate mass fraction (averaged over
the period when the mode diameter was in the NAMS size
range,∼ 20 nm diameter), calculated sulfuric acid concentration
([H2SO4]NAMS, from Eq. 2) and measured sulfuric acid concentra-
tion ([H2SO4]CIMS, averaged over the period of growth from 10–
20 nm) for particle formation events on 18 and 19 April 2011.

18 April 2011 19 April 2011

Growth rate (nm h−1)DMPS
a 1.2± 0.1 3.0± 0.4

Sulfate mass fractionNAMS
a 0.27± 0.08 0.35± 0.11

[H2SO4]NAMS (molec cm−3)b 3± 1× 106 1.0± 0.4× 107

[H2SO4]CIMS (molec cm−3)a 3± 2× 106 6± 3× 106

a Experimental measurements;b calculated from Eq. (2).

condensation. For example, if sulfuric acid represented only
20 % of the total condensation rate, then it would take much
longer, on the order of 12–15 h, to increase the sulfate mass
fraction to 30 %. Since a time lag of this magnitude is not ob-
served between the increases in sulfuric acid concentration
and sulfur mole fraction, mass growth of preexisting parti-
cles at the onset of NPF occurs primarily by sulfuric acid
condensation. This observation is consistent with a previous
AMS measurement of NPF at larger particle diameters, as
sulfate was the first species whose particle-phase concentra-
tion increased during the event (Q. Zhang et al., 2004).

Table 1 gives, for each event, the measured particle growth
rate and sulfate mass fraction, as well as the effective sulfu-
ric acid gas-phase concentration calculated from the particle-
phase sulfate mass fraction ([H2SO4]NAMS) and the mea-
sured average sulfuric acid concentration ([H2SO4]CIMS).
Measuring particle composition at 20 nm diameter informs
about processes operative during growth from 10 to 20 nm,
since∼ 90 % of the particle mass was gained during this pe-
riod. Therefore, the particle growth rate and [H2SO4]CIMS
were averaged over the time period that the mode diameter
increased from 10 to 20 nm, whereas sulfate mass fraction
was averaged over the time period that the mode diameter
was within the size range analyzed by NAMS (∼ 18–22 nm).
For both NPF events, the calculated sulfuric acid concentra-
tion ([H2SO4]NAMS) is consistent with the range of measured
sulfuric acid concentrations ([H2SO4]CIMS). The similarity
between calculated and measured sulfuric acid concentra-
tions confirms the link between particle-phase sulfate mass
fraction and the rate of gas-phase sulfuric acid condensation.
In other words, sulfuric acid uptake into the particles is ap-
proximately collision-rate-limited. An important corollary is
that existing models are sufficient to describe the uptake of
sulfuric acid to growing nanoparticles.

Similar time-dependent changes in the composition of
20 nm particles are observed in all eight particle formation
events observed during this campaign, as shown in Fig. 2.
(The yellow shaded regions in Fig. 2 show the approximate
time periods for particle growth through the measured size

range, as given by particle hit rates with NAMS.) For seven
out of eight events, the sulfur mole fraction increases be-
fore the particle mode diameter enters the NAMS size range
and then decreases as the mode diameter grows past this
range. The change in nitrogen mole fraction is highly cor-
related with sulfur mole fraction (r = 0.83) (Fig. 2b), sug-
gesting that nitrogen incorporation is determined primarily
by the sulfur content. The likely form of this nitrogen during
NPF is ammonium ion. Inorganic nitrate and organic amines
can be discounted for several reasons. First, the Aerosol In-
organics Model (AIM) (Clegg et al., 1998) predicts for both
solid and liquid condensed phases in the range of tempera-
tures and relative humidities of this study that particulate ni-
trate will be present only when the ammonium concentration
is greater than twice the sulfate concentration. This condi-
tion is not met during any of the NPF events since the N / S
mole ratio during these time periods averages around 1.5 and
never reaches 2. Inorganic nitrate, however, cannot be ruled
out during some off-event nighttime periods where the N / S
mole ratio exceeds 2. Second, chemical composition mea-
surements of accumulation mode particles with AMS dur-
ing these events show that the nitrate to sulfate mole ratios
are all below 0.1 (average 0.06), and there is little evidence
of aliphatic amines. Third, chemical composition measure-
ments with TDCIMS (Smith et al., 2010) in the same particle
size range as NAMS, available only for 18–19 April, show
no evidence of inorganic nitrate. Gas-phase amines were not
monitored during this campaign. These observations, com-
bined with the strong positive correlation between nitrogen
and sulfur in Fig. 2b, suggest that essentially all nitrogen is
in the form of ammonium. Although the thermodynamic end
point predicted by AIM is fully neutralized ammonium sul-
fate, only partial neutralization of sulfate is observed during
the eight NPF events. Partial neutralization suggests either a
kinetic barrier to ammonium incorporation, for example due
to an activation barrier for ammonia uptake (Bzdek et al.,
2013a), or a modification of the thermodynamic end point
by the Kelvin effect. In contrast, AMS measurements of ac-
cumulation mode particles show that they are fully neutral-
ized during NPF (ammonium / sulfate mole ratio≈ 2) as pre-
dicted by AIM and indicating that sufficient ammonia lev-
els existed to neutralize sulfuric acid fully in accumulation
mode particles. During these NPF events, sulfuric acid con-
centrations ranged from mid-106 to low 107 molecules cm−3,
whereas ammonia concentrations ranged from mid-108 to
low 109 molecules cm−3 (Hakola and Makkonen, unpub-
lished results), confirming that ammonia concentrations were
sufficient to neutralize sulfuric acid.

Figure 2c shows that the carbon mole fraction is anti-
correlated with nitrogen (r = −0.91), sulfur (r = −0.87) and
oxygen (r = −0.81). The carbon mole fraction is high at
night when the sulfur mole fraction is low and then decreases
(in relative terms) during the day when NPF occurs. The
chemical composition of 20 nm particles is clearly different
at night (when particle number concentrations are only on the
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Fig. 2. (a) Particle size distributions for eight days when NPF occurred.(b) Elemental mole fractions of nitrogen (blue) and sulfur (red).
(c) Elemental mole fractions of carbon (green) and oxygen (violet). Elemental mole fractions were subjected to 10-point boxcar smoothing;
shaded regions show approximate time periods when the particle mode diameter was within the NAMS size range.(d) Average elemental
compositions of particles sampled during NPF events, in the mornings of event days (02:00–09:00 LT), in the mornings of non-event days
(02:00–09:00) and in the afternoons/evenings of non-event days (10:00–22:00).

order of a few hundred per cm3) than during the day when
NPF occurs (and particle number concentrations increase to
a few thousand per cm3). Another trend in Fig. 2c is that car-
bon content generally increases from left to right (beginning
to end of the measurement period), while sulfur and nitrogen
both decrease. In Fig. 2d, the average elemental composi-
tion during NPF (average over the yellow shaded periods in
Fig. 2b and c) is compared to averages over three non-event
time periods: (1) morning hours on event days before NPF
begins, (2) morning hours on non-event days and (3) after-
noon/evening hours on non-event days. Within experimental
error, the elemental compositions during the three off-event
time periods are the same. In contrast, the elemental compo-
sition of nanoparticles during NPF is substantially different

from composition during these three other time periods. In
particular, S mole fraction increases by > 100 % and N mole
fraction by 50 %, whereas C mole fraction decreases by about
30 %. One implication of these observations is that diurnal
trends in nanoparticle chemical composition at this location
are not as pronounced on non-NPF days as on NPF days.
This is in contrast to another study of NPF in a rural/coastal
environment where substantial diurnal trends in nanoparticle
composition were measured on both NPF and non-NPF days,
although the chemical species enhanced on each type of day
were different (Bzdek et al., 2013b).

Figure 3a shows the mass fractions of ammonium, sulfate
and carbonaceous matter for 20 nm particles during NPF, av-
eraged over each of the eight shaded time periods in Fig. 2.
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Fig. 3. (a)Mass fractions of sulfate, ammonium and carbonaceous
matter for eight NPF events during the measurement campaign. The
numerical value inset in each bar is the O / C ratio for that event pe-
riod. (b) Mass growth rates of sulfate, ammonium and carbonaceous
matter for the same NPF events. Molecular composition uncertain-
ties are based on assigned uncertainties for measurement of elemen-
tal nitrogen and sulfur (10 %).

Ammonium and sulfate are given by nitrogen and sulfur mole
fractions as described above. Carbonaceous matter is given
by all carbon in the particles plus the portion of oxygen that
is not assigned to sulfate. In the early portion of this study,
ammonium and sulfate together represent almost two-thirds
of the total mass growth, and their contribution decreases to
less than half of the mass growth at the end of this study.
The remaining mass growth is associated with carbonaceous
matter. The increasing contribution of carbonaceous matter
during the study parallels increases in biological production
of volatile organic carbon as plant growth begins in the spring
(Hakola et al., 2012). The apparent oxygen to carbon (O / C)
mole ratios for carbonaceous matter are given as insets in
Fig. 3a. These values range from 0.4 to 0.6, which is charac-
teristic of “fresh” secondary organic aerosol (SOA) from bio-
genic sources (Jimenez et al., 2009). The presence of fresh
SOA in these particles is not surprising since the fast par-
ticle growth rate leaves little time for oxidative aging. The
high contribution of carbonaceous matter to aerosol growth
is consistent with previous measurements of aerosol compo-
sition with AMS in Hyytiälä (Allan et al., 2006; Raatikainen
et al., 2010).

Figure 3b shows particle compositions scaled to total
growth rate for each of these events. These graphs show that
the difference in growth rate from one event to another is
caused by a change in the growth rate of all three types of
matter together (ammonium, sulfate, carbonaceous matter)
and not simply by one of these alone. This observation sug-

gests that growth by all three types of matter is driven by pho-
tochemistry and/or atmospheric conditions in a similar man-
ner. The differences among absolute growth rates in Fig. 3b
are much greater than the differences among relative growth
rates in Fig. 3a.

4 Conclusions

This study shows that particle growth in the 20 nm size range
during NPF in the Finnish boreal forest springtime occurs by
two major pathways: (1) condensation of sulfuric acid with
concurrent partial neutralization by ammonia and (2) forma-
tion of “fresh” SOA. The extent to which these two pathways
contribute to nanoparticle growth is quantified for the first
time. Additionally, sulfuric acid condensation is shown to
impact substantially the composition of preexisting nanopar-
ticles not associated with the formation event. The relative
importance of SOA increases as biological activity in the
local environment increases. Nitrogen and sulfur mole frac-
tions in these particles are highly correlated, suggesting that
mass growth by ammonia uptake is driven by sulfuric acid
condensation. However, these particles are acidic and do not
reach the thermodynamic end point of full neutralization to
sulfate. In order to understand springtime NPF more thor-
oughly, future research should be directed toward chemical
processes governing sulfate neutralization and acid-catalyzed
SOA formation in particles where the Kelvin effect may be
substantial.
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