121 research outputs found

    QCD Sum Rule Analysis of Heavy Quarkonium Hybrids

    Full text link
    We have studied the charmonium and bottomonium hybrid states with various JPCJ^{PC} quantum numbers in QCD sum rules. At leading order in αs\alpha_s, the two-point correlation functions have been calculated up to dimension six including the tri-gluon condensate and four-quark condensate. After performing the QCD sum rule analysis, we have confirmed that the dimension six condensates can stabilize the hybrid sum rules and allow the reliable mass predictions. We have updated the mass spectra of the charmonium and bottomonium hybrid states and identified that the negative-parity states with JPC=(0,1,2)+,1J^{PC}=(0, 1, 2)^{-+}, 1^{--} form the lightest hybrid supermultiplet while the positive-parity states with JPC=(0,1)+,(0,1,2)++J^{PC}=(0, 1)^{+-}, (0, 1, 2)^{++} belong to a heavier hybrid supermultiplet.Comment: 7 pages, 1 figures. Some minor edits have been made. Presentation at the DPF 2013 Meeting of the American Physical Society Division of Particles and Fields, Santa Cruz, California, August 13-17, 201

    Exploring the Spectrum of Heavy Quarkonium Hybrids with QCD Sum Rules

    Full text link
    QCD Laplace sum rules are used to calculate heavy quarkonium (charmonium and bottomonium) hybrid masses in several distinct JPCJ^{PC} channels. Previous studies of heavy quarkonium hybrids did not include the effects of dimension-six condensates, leading to unstable sum rules and unreliable mass predictions in some channels. We have updated these sum rules to include dimension-six condensates, providing new mass predictions for the spectra of heavy quarkonium hybrids. We confirm the finding of other approaches that the negative-parity JPC=(0,1,2)+,1J^{PC}=(0,1,2)^{-+},\,1^{--} states form the lightest hybrid supermultiplet and the positive-parity JPC=(0,1)+,(0,1,2)++J^{PC}=(0,1)^{+-},\,(0,1,2)^{++} states are members of a heavier supermultiplet. Our results disfavor a pure charmonium hybrid interpretation of the X(3872)X(3872), in agreement with previous work.Comment: Presented by RTK at the Theory Canada 9 Conference, held at Wilfrid Laurier University in June 2014. Submitted for the conference proceedings to be published in the Canadian Journal of Physics. 5 pages, 1 figure. Version 2: reference added, typo correcte

    Experimental and numerical study of SiON microresonators with air and polymer cladding

    Get PDF
    A systematic experimental and numerical study of the device performance of waveguide-coupled SiON microresonators with air and polymer cladding is presented. Values of device parameters like propagation losses of the microresonator modes, the off-resonance insertion losses, and the straight waveguide to microresonator coupling are determined by applying a detailed fitting procedure to the experimental results and compared to results of detailed numerical simulations. By comparing the propagation losses of the fundamental TE polarized microresonator mode obtained by fitting to the measured spectra to the also experimentally determined propagation losses in the adjacent straight waveguide and the materials losses, it is possible to identify the loss mechanisms in the microresonator. By comparing experimental results for microresonators with air and polymethylmethacrylate cladding and a detailed numerical study, the influence of the cladding index on the bend losses is evaluated. It is demonstrated that the presence of an upper cladding can, under the right conditions, actually be beneficial for loss reduction

    Mass Spectrum of Heavy Quarkonium Hybrids

    Full text link
    We have extended the calculation of the correlation functions of heavy quarkonium hybrid operators with various JPCJ^{PC} quantum numbers to include QCD condensates up to dimension six. In contrast to previous analyses which were unable to optimize the QCD sum-rules for certain JPCJ^{PC}, recent work has shown that inclusion of dimension six condensates stabilizes the hybrid sum-rules and permits reliable mass predictions. In this work we have investigated the effects of the dimension six condensates on the remaining channels. After performing the QCD sum-rule analysis, we update the mass spectra of charmonium and bottomonium hybrids with exotic and non-exotic quantum numbers. We identify that the negative-parity states with JPC=(0,1,2)+,1J^{PC}=(0, 1, 2)^{-+}, 1^{--} form the lightest hybrid supermultiplet while the positive-parity states with JPC=(0,1)+,(0,1,2)++J^{PC}=(0, 1)^{+-}, (0, 1, 2)^{++} belong to a heavier hybrid supermultiplet, confirming the supermultiplet structure found in other approaches. The hybrid with JPC=0J^{PC}=0^{--} has a much higher mass which may suggest a different excitation of the gluonic field compared to other channels. In agreement with previous results, we find that the JPC=1++J^{PC}=1^{++} charmonium hybrid is substantially heavier than the X(3872), which seems to preclude a pure charmonium hybrid interpretation for this state.Comment: 17 pages, 7 figures, 4 table

    On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    Get PDF
    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life

    Systemic Oxidative Stress Is Increased in Postmenopausal Women and Independently Associates with Homocysteine Levels

    Get PDF
    Oxidative stress plays a pivotal role in the pathogenesis of cardiovascular diseases (CVD). Postmenopausal women have an increased risk of developing CVD due to decreased estrogen availability, which is accompanied by increased oxidative stress. Serum free thiols (R-SH) provide a robust and powerful read-out of systemic oxidative stress. In this study, we aimed to establish serum levels of free thiols and explore associations between free thiols and demographic, clinical, and biochemical parameters related to obesity and the risk for developing CVD in both pre-and postmenopausal women. Serum free thiols were measured in a cohort consisting of healthy pre-(n = 223) and postmenopausal (n = 118) Omani women. Postmenopausal women had significantly lower levels of serum free thiols as compared to premenopausal women (762.9 ± 85.3 vs. 780 ± 80.9 µM, age-adjusted p < 0.001). Women′ s age was positively associated with serum free thiol levels in premenopausal women (β = 0.36, p = 0.002), whereas an inverse association was observed in postmenopausal women (β = −0.29, p = 0.002). Homocysteine levels were significantly inversely associated with serum free thiol levels in both pre-(β = −0.19, p = 0.005) and postmenopausal (β = −0.20, p = 0.032) women, independent from known cardiovascular risk factors. In this study, we show that postmenopausal women are affected by increased systemic oxidative stress, which independently associates with homocysteine levels

    Serum free thiols predict cardiovascular events and all-cause mortality in the general population:a prospective cohort study

    Get PDF
    BACKGROUND: Serum free thiols (R-SH, sulfhydryl groups) reliably reflect systemic oxidative stress. Since serum free thiols are rapidly oxidized by reactive species, systemic oxidative stress is generally associated with reduced serum free thiol levels. Free thiols associate with favorable disease outcomes in many patient cohorts, and the current hypothesis is that oxidative stress might also play an important role in cardiovascular disease. In this study, we aimed to establish the role of serum free thiols in the general population by investigating their relationship with the risk of cardiovascular (CV) events and all-cause mortality. METHODS: Participants (n = 5955) of the Prevention of REnal and Vascular ENd-stage Disease (PREVEND) cohort study from the general population were included. At baseline, serum levels of free thiols were quantified and adjusted to total protein levels. Protein-adjusted serum free thiol levels were studied for their associations with clinical and biochemical parameters, as well as with the risk of CV events and all-cause mortality. RESULTS: The mean protein-adjusted serum free thiol level was 5.05 ± 1.02 μmol/g of protein. Protein-adjusted serum free thiols significantly predicted the risk of CV events, even after adjustment for potential confounding factors (hazard ratio [HR] per doubling 0.68 [95% confidence interval [CI] 0.47-1.00], P = 0.048). Similarly, protein-adjusted serum free thiols were significantly predictive of the risk of all-cause mortality (HR per doubling 0.66 [95% CI 0.44-1.00], P = 0.050). Stratified analyses revealed lower HRs for subjects with a lower body mass index (BMI), without hypertension, and without diabetes. Conversely, HRs were lower in subjects with albuminuria. CONCLUSIONS: In this large population-based cohort study, serum free thiols significantly predicted the risk of CV events and all-cause mortality. Our results highlight the potential significance and clinical applicability of serum free thiols since they are amendable to therapeutic intervention
    corecore