10,836 research outputs found

    Interference features in scanning gate conductance maps of quantum point contacts with disorder

    Full text link
    We consider quantum point contacts (QPCs) defined within disordered two-dimensional electron gases as studied by scanning gate microscopy. We evaluate the conductance maps in the Landauer approach and wave function picture of electron transport for samples with both low and high electron mobility at finite temperatures. We discuss the spatial distribution of the impurities in the context of the branched electron flow. We reproduce the surprising temperature stability of the experimental interference fringes far from the QPC. Next, we discuss -- previously undescribed -- funnel-shaped features that accompany splitting of the branches visible in previous experiments. Finally, we study elliptical interference fringes formed by an interplay of scattering by the point-like impurities and by the scanning probe. We discuss the details of the elliptical features as functions of the tip voltage and the temperature, showing that the first interference fringe is very robust against the thermal widening of the Fermi level. We present a simple analytical model that allows for extraction of the impurity positions and the electron gas depletion radius induced by the negatively charged tip of the atomic force microscope, and apply this model on experimental scanning gate images showing such elliptical fringes

    Exploring the PcycP_{cyc} vs ProtP_{rot} relation with flux transport dynamo models of solar-like stars

    Full text link
    Aims: To understand stellar magnetism and to test the validity of the Babcock-Leighton flux transport mean field dynamo models with stellar activity observations Methods: 2-D mean field dynamo models at various rotation rates are computed with the STELEM code to study the sensitivity of the activity cycle period and butterfly diagram to parameter changes and are compared to observational data. The novelty is that these 2-D mean field dynamo models incorporate scaling laws deduced from 3-D hydrodynamical simulations for the influence of rotation rate on the amplitude and profile of the meridional circulation. These models make also use of observational scaling laws for the variation of differential rotation with rotation rate. Results: We find that Babcock-Leighton flux transport dynamo models are able to reproduce the change in topology of the magnetic field (i.e. toward being more toroidal with increasing rotation rate) but seem to have difficulty reproducing the cycle period vs activity period correlation observed in solar-like stars if a monolithic single cell meridional flow is assumed. It may however be possible to recover the PcycP_{cyc} vs ProtP_{rot} relation with more complex meridional flows, if the profile changes in a particular assumed manner with rotation rate. Conclusions: The Babcock-Leighton flux transport dynamo model based on single cell meridional circulation does not reproduce the PcycP_{cyc} vs ProtP_{rot} relation unless the amplitude of the meridional circulation is assumed to increase with rotation rate which seems to be in contradiction with recent results obtained with 3-D global simulations.Comment: 12 pages, 8 figures, accepted for publication by A&A 1: AIM, CEA/DSM-CNRS-Univ. Paris 7, IRFU/SAp, France, 2: D.A.M.T.P., Centre for Mathematical Sciences, Univ. of Cambridge, UK, 3: JILA and Department of Astrophysical and Planetary Sciences, Univ. of Colorado, US

    Achieving control of in-plane elastic waves

    Full text link
    We derive the elastic properties of a cylindrical cloak for in-plane coupled shear and pressure waves. The cloak is characterized by a rank 4 elasticity tensor with 16 spatially varying entries which are deduced from a geometric transform. Remarkably, the Navier equations retain their form under this transform, which is generally untrue [Milton et al., New J. Phys. 8, 248 (2006)]. We numerically check that clamped and freely vibrating obstacles located inside the neutral region are cloaked disrespectful of the frequency and the polarization of an incoming elastic wave.Comment: 9 pages, 4 figure

    2D Rutherford-Like Scattering in Ballistic Nanodevices

    Full text link
    Ballistic injection in a nanodevice is a complex process where electrons can either be transmitted or reflected, thereby introducing deviations from the otherwise quantized conductance. In this context, quantum rings (QRs) appear as model geometries: in a semiclassical view, most electrons bounce against the central QR antidot, which strongly reduces injection efficiency. Thanks to an analogy with Rutherford scattering, we show that a local partial depletion of the QR close to the edge of the antidot can counter-intuitively ease ballistic electron injection. On the contrary, local charge accumulation can focus the semi-classical trajectories on the hard-wall potential and strongly enhance reflection back to the lead. Scanning gate experiments on a ballistic QR, and simulations of the conductance of the same device are consistent, and agree to show that the effect is directly proportional to the ratio between the strength of the perturbation and the Fermi energy. Our observation surprisingly fits the simple Rutherford formalism in two-dimensions in the classical limit

    Three-Dimensional Simulations of Solar and Stellar Dynamos: The Influence of a Tachocline

    Full text link
    We review recent advances in modeling global-scale convection and dynamo processes with the Anelastic Spherical Harmonic (ASH) code. In particular, we have recently achieved the first global-scale solar convection simulations that exhibit turbulent pumping of magnetic flux into a simulated tachocline and the subsequent organization and amplification of toroidal field structures by rotational shear. The presence of a tachocline not only promotes the generation of mean toroidal flux, but it also enhances and stabilizes the mean poloidal field throughout the convection zone, promoting dipolar structure with less frequent polarity reversals. The magnetic field generated by a convective dynamo with a tachocline and overshoot region is also more helical overall, with a sign reversal in the northern and southern hemispheres. Toroidal tachocline fields exhibit little indication of magnetic buoyancy instabilities but may be undergoing magneto-shear instabilities.Comment: 14 pages, 5 color figures, to appear in Proc. GONG 2008/SOHO XXI Meeting on Solar-Stellar Dynamos as Revealed by Helio and Asteroseismology, held August 15-18, 2008, Boulder, CO, Astronomical Soc. Pac. Conf. Series, volume TB

    Galaxy Selection and Clustering and Lyman alpha Absorber Identification

    Full text link
    The effects of galaxy selection on our ability to constrain the nature of weak Ly\alpha absorbers at low redshift are explored. Current observations indicate the existence of a population of gas-rich, low surface brightness (LSB) galaxies, and these galaxies may have large cross sections for Ly\alpha absorption. Absorption arising in LSB galaxies may be attributed to HSB galaxies at larger impact parameters from quasar lines of sight, so that the observed absorption cross sections of galaxies may seem unreasonably large. Thus it is not possible to rule out scenarios where LSB galaxies make substantial contributions to Ly\alpha absorption using direct observations. Less direct tests, where observational selection effects are taken into account using simulations, should make it possible to determine the nature of Ly\alpha absorbers by observing a sample of ~100 galaxies around quasar lines of sight with well-defined selection criteria. Such tests, which involve comparing simulated and observed plots of the unidentified absorber fractions and absorbing galaxy fractions versus impact parameter, can distinguish between scenarios where absorbers arise in particular galaxies and those where absorbers arise in gas tracing the large scale galaxy distribution. Care must be taken to minimize selection effects even when using these tests. Results from such tests are likely to depend upon the limiting neutral hydrogen column density. While not enough data are currently available to make a strong conclusion about the nature of moderately weak absorbers, evidence is seen that such absorbers arise in gas that is around or between galaxies that are often not detected in surveys.Comment: 15 pages, 10 figures, accepted to the Astrophysical Journa
    • …
    corecore