301 research outputs found
Overview of the Far Ultraviolet Spectroscopic Explorer Mission
The Far Ultraviolet Spectroscopic Explorer satellite observes light in the
far-ultraviolet spectral region, 905 - 1187 A with high spectral resolution.
The instrument consists of four coaligned prime-focus telescopes and Rowland
spectrographs with microchannel plate detectors. Two of the telescope channels
use Al:LiF coatings for optimum reflectivity from approximately 1000 to 1187 A
and the other two use SiC coatings for optimized throughput between 905 and
1105 A. The gratings are holographically ruled to largely correct for
astigmatism and to minimize scattered light. The microchannel plate detectors
have KBr photocathodes and use photon counting to achieve good quantum
efficiency with low background signal. The sensitivity is sufficient to examine
reddened lines of sight within the Milky Way as well as active galactic nuclei
and QSOs for absorption line studies of both Milky Way and extra-galactic gas
clouds. This spectral region contains a number of key scientific diagnostics,
including O VI, H I, D I and the strong electronic transitions of H2 and HD.Comment: To appear in FUSE special issue of the Astrophysical Journal Letters.
6 pages + 4 figure
Extreme Energy Cosmic Rays (EECR) Observation Capabilities of an "Airwatch from Space'' Mission
The longitudinal development and other characteristics of the EECR induced
atmospheric showers can be studied from space by detecting the fluorescence
light induced in the atmospheric nitrogen. According to the Airwatch concept a
single fast detector can be used for measuring both intensity and time
development of the streak of fluorescence light produced by the atmospheric
shower induced by an EECR. In the present communication the detection
capabilities for the EECR observation from space are discussed.Comment: 3 pages (LaTeX). To appear in the Proceedings of TAUP'9
Far Ultraviolet Absolute Flux of alpha Virginis
We present the far ultraviolet spectrum of alpha Virginis taken with EURD
spectrograph on-board MINISAT-01. The spectral range covered is from ~900 to
1080 A with 5 A spectral resolution. We have fitted Kurucz models to IUE
spectra of alpha Vir and compared the extension of the model to our wavelengths
with EURD data. This comparison shows that EURD fluxes are consistent with the
prediction of the model within 20-30%, depending on the reddening assumed. EURD
fluxes are consistent with Voyager observations but are ~60% higher than most
previous rocket observations of alpha Vir.Comment: 13 pages, 4 figures. Submitted to The Astrophysical Journa
Far Ultraviolet Spectra of B Stars near the Ecliptic
Spectra of B stars in the wavelength range of 911-1100 A have been obtained
with the EURD spectrograph onboard the Spanish satellite MINISAT-01 with ~5 A
spectral resolution. IUE spectra of the same stars have been used to normalize
Kurucz models to the distance, reddening and spectral type of the corresponding
star. The comparison of 8 main-sequence stars studied in detail (alpha Vir,
epsilon Tau, lambda Tau, tau Tau, alpha Leo, zeta Lib, theta Oph, and sigma
Sgr) shows agreement with Kurucz models, but observed fluxes are 10-40% higher
than the models in most cases. The difference in flux between observations and
models is higher in the wavelength range between Lyman alpha and Lyman beta. We
suggest that Kurucz models underestimate the FUV flux of main-sequence B stars
between these two Lyman lines. Computation of flux distributions of
line-blanketed model atmospheres including non-LTE effects suggests that this
flux underestimate could be due to departures from LTE, although other causes
cannot be ruled out. We found the common assumption of solar metallicity for
young disk stars should be made with care, since small deviations can have a
significant impact on FUV model fluxes. Two peculiar stars (rho Leo and epsilon
Aqr), and two emission line stars (epsilon Cap and pi Aqr) were also studied.
Of these, only epsilon Aqr has a flux in agreement with the models. The rest
have strong variability in the IUE range and/or uncertain reddening, which
makes the comparison with models difficult.Comment: 25 pages, 6 figures, to be published in The Astrophysical Journa
Far-ultraviolet Spectroscopy of Venus and Mars at 4 A Resolution with the Hopkins Ultraviolet Telescope on Astro-2
Far-ultraviolet spectra of Venus and Mars in the range 820-1840 A at 4 A
resolution were obtained on 13 and 12 March 1995, respectively, by the Hopkins
Ultraviolet Telescope (HUT), which was part of the Astro-2 observatory on the
Space Shuttle Endeavour. Longward of 1250 A, the spectra of both planets are
dominated by emission of the CO Fourth Positive band system and strong OI and
CI multiplets. In addition, CO Hopfield-Birge bands, B - X (0,0) at 1151 A and
C - X (0,0) at 1088 A, are detected for the first time, and there is a weak
indication of the E - X (0,0) band at 1076 A in the spectrum of Venus. The B -
X band is blended with emission from OI 1152. Modeling the relative intensities
of these bands suggests that resonance fluorescence of CO is the dominant
source of the emission, as it is for the Fourth Positive system. Shortward of
Lyman-alpha, other emission features detected include OII 834, OI lambda 989,
HI Lyman-beta, and NI 1134 and 1200. For Venus, the derived disk brightnesses
of the OI, OII, and HI features are about one-half of those reported by Hord et
al. (1991) from Galileo EUV measurements made in February 1990. This result is
consistent with the expected variation from solar maximum to solar minimum. The
ArI 1048, 1066 doublet is detected only in the spectrum of Mars and the derived
mixing ratio of Ar is of the order of 2%, consistent with previous
determinations.Comment: 8 pages, 5 figures, accepted for publication in ApJ, July 20, 200
Ten steps or climbing a mountain: A study of Australian health professionals' perceptions of implementing the baby friendly health initiative to protect, promote and support breastfeeding
Background: The Baby Friendly Hospital (Health) Initiative (BFHI) is a global initiative aimed at protecting,
promoting and supporting breastfeeding and is based on the ten steps to successful breastfeeding. Worldwide,
over 20,000 health facilities have attained BFHI accreditation but only 77 Australian hospitals (approximately 23%)
have received accreditation. Few studies have investigated the factors that facilitate or hinder implementation of
BFHI but it is acknowledged this is a major undertaking requiring strategic planning and change management
throughout an institution. This paper examines the perceptions of BFHI held by midwives and nurses working in
one Area Health Service in NSW, Australia.
Methods: The study used an interpretive, qualitative approach. A total of 132 health professionals, working across four maternity units, two neonatal intensive care units and related community services, participated in 10 focus groups. Data were analysed using thematic analysis.
Results: Three main themes were identified: ‘Belief and Commitment’; ‘Interpreting BFHI’ and ‘Climbing a
Mountain’. Participants considered the BFHI implementation a high priority; an essential set of practices that would
have positive benefits for babies and mothers both locally and globally as well as for health professionals. It was
considered achievable but would take commitment and hard work to overcome the numerous challenges including a number of organisational constraints. There were, however, differing interpretations of what was required to attain BFHI accreditation with the potential that misinterpretation could hinder implementation.
A model described by Greenhalgh and colleagues on adoption of innovation is drawn on to interpret the findings.
Conclusion: Despite strong support for BFHI, the principles of this global strategy are interpreted differently by
health professionals and further education and accurate information is required. It may be that the current
processes used to disseminate and implement BFHI need to be reviewed. The findings suggest that there is a
contradiction between the broad philosophical stance and best practice approach of this global strategy and the
tendency for health professionals to focus on the ten steps as a set of tasks or a checklist to be accomplished. The
perceived procedural approach to implementation may be contributing to lower rates of breastfeeding
continuation
Modeling magnetospheric fields in the Jupiter system
The various processes which generate magnetic fields within the Jupiter
system are exemplary for a large class of similar processes occurring at other
planets in the solar system, but also around extrasolar planets. Jupiter's
large internal dynamo magnetic field generates a gigantic magnetosphere, which
is strongly rotational driven and possesses large plasma sources located deeply
within the magnetosphere. The combination of the latter two effects is the
primary reason for Jupiter's main auroral ovals. Jupiter's moon Ganymede is the
only known moon with an intrinsic dynamo magnetic field, which generates a
mini-magnetosphere located within Jupiter's larger magnetosphere including two
auroral ovals. Ganymede's magnetosphere is qualitatively different compared to
the one from Jupiter. It possesses no bow shock but develops Alfv\'en wings
similar to most of the extrasolar planets which orbit their host stars within
0.1 AU. New numerical models of Jupiter's and Ganymede's magnetospheres
presented here provide quantitative insight into the processes that maintain
these magnetospheres. Jupiter's magnetospheric field is approximately
time-periodic at the locations of Jupiter's moons and induces secondary
magnetic fields in electrically conductive layers such as subsurface oceans. In
the case of Ganymede, these secondary magnetic fields influence the oscillation
of the location of its auroral ovals. Based on dedicated Hubble Space Telescope
observations, an analysis of the amplitudes of the auroral oscillations
provides evidence that Ganymede harbors a subsurface ocean. Callisto in
contrast does not possess a mini-magnetosphere, but still shows a perturbed
magnetic field environment. Callisto's ionosphere and atmospheric UV emission
is different compared to the other Galilean satellites as it is primarily been
generated by solar photons compared to magnetospheric electrons.Comment: Chapter for Book: Planetary Magnetis
Curricular orientations to real-world contexts in mathematics
A common claim about mathematics education is that it should equip students to use mathematics in the ‘real world’. In this paper, we examine how relationships between mathematics education and the real world are materialised in the curriculum across a sample of eleven jurisdictions. In particular, we address the orientation of the curriculum towards application of mathematics, the ways that real-world contexts are positioned within the curriculum content, the ways in which different groups of students are expected to engage with real-world contexts, and the extent to which high-stakes assessments include real-world problem solving. The analysis reveals variation across jurisdictions and some lack of coherence between official orientations towards use of mathematics in the real world and the ways that this is materialised in the organisation of the content for students
Grouping practices in the primary school: what influences change?
During the 1990s, there was considerable emphasis on promoting particular kinds of pupil grouping as a means of raising educational standards. This survey of 2000 primary schools explored the extent to which schools had changed their grouping practices in responses to this, the nature of the changes made and the reasons for those changes. Forty eight percent of responding schools reported that they had made no change. Twenty two percent reported changes because of the literacy hour, 2% because of the numeracy hour, 7% because of a combination of these and 21% for other reasons. Important influences on decisions about the types of grouping adopted were related to pupil learning and differentiation, teaching, the implementation of the national literacy strategy, practical issues and school self-evaluation
UV and EUV Instruments
We describe telescopes and instruments that were developed and used for
astronomical research in the ultraviolet (UV) and extreme ultraviolet (EUV)
regions of the electromagnetic spectrum. The wavelength ranges covered by these
bands are not uniquely defined. We use the following convention here: The EUV
and UV span the regions ~100-912 and 912-3000 Angstroem respectively. The
limitation between both ranges is a natural choice, because the hydrogen Lyman
absorption edge is located at 912 Angstroem. At smaller wavelengths,
astronomical sources are strongly absorbed by the interstellar medium. It also
marks a technical limit, because telescopes and instruments are of different
design. In the EUV range, the technology is strongly related to that utilized
in X-ray astronomy, while in the UV range the instruments in many cases have
their roots in optical astronomy. We will, therefore, describe the UV and EUV
instruments in appropriate conciseness and refer to the respective chapters of
this volume for more technical details.Comment: To appear in: Landolt-Boernstein, New Series VI/4A, Astronomy,
Astrophysics, and Cosmology; Instruments and Methods, ed. J.E. Truemper,
Springer-Verlag, Berlin, 201
- …
