5,450 research outputs found
A Novel Optical/digital Processing System for Pattern Recognition
This paper describes two processing algorithms that can be implemented optically: the Radon transform and angular correlation. These two algorithms can be combined in one optical processor to extract all the basic geometric and amplitude features from objects embedded in video imagery. We show that the internal amplitude structure of objects is recovered by the Radon transform, which is a well-known result, but, in addition, we show simulation results that calculate angular correlation, a simple but unique algorithm that extracts object boundaries from suitably threshold images from which length, width, area, aspect ratio, and orientation can be derived. In addition to circumventing scale and rotation distortions, these simulations indicate that the features derived from the angular correlation algorithm are relatively insensitive to tracking shifts and image noise. Some optical architecture concepts, including one based on micro-optical lenslet arrays, have been developed to implement these algorithms. Simulation test and evaluation using simple synthetic object data will be described, including results of a study that uses object boundaries (derivable from angular correlation) to classify simple objects using a neural network
A preliminary study on Dodecaceria pacifica (Fewkes)
In various areas along the coast in the vicinity of Monterey there are many colonies of the Polychaete worm Dodecaceria pacifica. An attempt has been made to find out something of the distribution, size, structure and the flora and fauna associated with these colonies
Optimal Unemployment Insurance with Monitoring and Sanctions
This paper analyzes the design of optimal unemployment insurance in a search equilibrium framework where search effort among the unemployed is not perfectly observable.We examine to what extent the optimal policy involves monitoring of search effort and benefit sanctions if observed search is deemed insuficient.We find that introducing monitoring and sanctions represents a welfare improvement for reasonable estimates of monitoring costs; this conclusion holds both relative to a system featuring indefinite payments of benefits and a system with a time limit on unemployment benefit receipt.The optimal sanction rates implied by our calibrated model are much higher than the sanction rates typically observed in European labor markets.unemployment insurance;job search
A survey of the plankton of Monterey Bay
The purpose of this paper is to add to the identification of planktonic forms found in Monterey Bay, and also to compare the composition and population fluctuation with findings of previous years
Monitoring Spacecraft Telemetry Via Optical or RF Link
A patent disclosure document discusses a photonic method for connecting a spacecraft with a launch vehicle upper-stage telemetry system as a means for monitoring a spacecraft fs health and status during and right after separation and deployment. This method also provides an efficient opto-coupled capability for prelaunch built-in-test (BIT) on the ground to enable more efficient and timely integration, preflight checkout, and a means to obviate any local EMI (electromagnetic interference) during integration and test. Additional utility can be envisioned for BIT on other platforms, such as the International Space Station (ISS). The photonic telemetry system implements an optical free-space link with a divergent laser transmitter beam spoiled over a significant cone angle to accommodate changes in spacecraft position without having to angle track it during deployment. Since the spacecraft may lose attitude control and tumble during deployment, the transmitted laser beam interrogates any one of several low-profile meso-scale retro-reflective spatial light modulators (SLMs) deployed over the surface of the spacecraft. The return signal beam, modulated by the SLMs, contains health, status, and attitude information received back at the launch vehicle. Very compact low-power opto-coupler technology already exists for the received signal (requiring relatively low bandwidths, e.g., .200 kbps) to enable transfer to a forward pass RF relay from the launch vehicle to TDRSS (Tracking and Data Relay Satellite System) or another recipient. The link would be active during separation and post-separation to monitor spacecraft health, status, attitude, or other data inventories until attitude recovery and ground control can be re-established. An optical link would not interfere with the existing upper stage telemetry and beacon systems, thus meeting launch vehicle EMI environmental constraints
CEO locus of control and small firm performance: an integrative framework and empirical test.
Imaging spontaneous imbibition in full Darcy‐scale samples at pore‐scale resolution by fast X‐ray tomography
Spontaneous imbibition is a process occurring in a porous medium which describes wetting phase replacing nonwetting phase spontaneously due to capillary forces. This process is conventionally investigated by standardized, well-established spontaneous imbibition tests. In these tests, for instance, a rock sample is surrounded by wetting fluid. The following cumulative production of nonwetting phase versus time is used as a qualitative measure for wettability. However, these test results are difficult to interpret, because many rocks do not show a homogeneous but a mixed wettability in which the wetting preference of a rock varies from location to location. Moreover, during the test the flow regime typically changes from countercurrent to cocurrent flow and no phase pressure or pressure drop can be recorded. To help interpretation, we complement Darcy-scale production curves with X-ray imaging to describe the differences in imbibition processes between water-wet and mixed-wet systems. We found that the formation of a spontaneous imbibition front occurs only for water-wet systems; mixed-wet systems show localized imbibition events only. The asymmetry of the front depends on the occurrence of preferred production sites, which influences interpretation. Fluid layers on the outside of mixed-wet samples increase connectivity of the drained phase and the effect of buoyancy on spontaneous imbibition. The wider implication of our study is the demonstration of the capability of benchtop laboratory equipment to image a full Darcy-scale experiment while at the same time obtaining pore-scale information, resolving the natural length and time scale of the underlying processes
- …
