523 research outputs found

    The thermal QCD transition with two flavours of twisted mass fermions

    Full text link
    We investigate the thermal QCD transition with two flavors of maximally twisted mass fermions for a set of pion masses, 300 MeV \textless mπm_\pi \textless 500 MeV, and lattice spacings aa \textless 0.09 fm. We determine the pseudo-critical temperatures and discuss their extrapolation to the chiral limit using scaling forms for different universality classes, as well as the scaling form for the magnetic equation of state. For all pion masses considered we find resonable consistency with O(4) scaling plus leading corrections. However, a true distinction between the O(4) scenario and a first order scenario in the chiral limit requires lighter pions than are currently in use in simulations of Wilson fermions.Comment: 11 pages, 11 figure

    DECam integration tests on telescope simulator

    Full text link
    The Dark Energy Survey (DES) is a next generation optical survey aimed at measuring the expansion history of the universe using four probes: weak gravitational lensing, galaxy cluster counts, baryon acoustic oscillations, and Type Ia supernovae. To perform the survey, the DES Collaboration is building the Dark Energy Camera (DECam), a 3 square degree, 570 Megapixel CCD camera which will be mounted at the Blanco 4-meter telescope at the Cerro Tololo Inter- American Observatory. DES will survey 5000 square degrees of the southern galactic cap in 5 filters (g, r, i, z, Y). DECam will be comprised of 74 250 micron thick fully depleted CCDs: 62 2k x 4k CCDs for imaging and 12 2k x 2k CCDs for guiding and focus. Construction of DECam is nearing completion. In order to verify that the camera meets technical specifications for DES and to reduce the time required to commission the instrument, we have constructed a full sized telescope simulator and performed full system testing and integration prior to shipping. To complete this comprehensive test phase we have simulated a DES observing run in which we have collected 4 nights worth of data. We report on the results of these unique tests performed for the DECam and its impact on the experiments progress.Comment: Proceedings of the 2nd International Conference on Technology and Instrumentation in Particle Physics (TIPP 2011). To appear in Physics Procedia. 8 pages, 3 figure

    PT-symmetry breaking in complex nonlinear wave equations and their deformations

    Get PDF
    We investigate complex versions of the Korteweg-deVries equations and an Ito type nonlinear system with two coupled nonlinear fields. We systematically construct rational, trigonometric/hyperbolic, elliptic and soliton solutions for these models and focus in particular on physically feasible systems, that is those with real energies. The reality of the energy is usually attributed to different realisations of an antilinear symmetry, as for instance PT-symmetry. It is shown that the symmetry can be spontaneously broken in two alternative ways either by specific choices of the domain or by manipulating the parameters in the solutions of the model, thus leading to complex energies. Surprisingly the reality of the energies can be regained in some cases by a further breaking of the symmetry on the level of the Hamiltonian. In many examples some of the fixed points in the complex solution for the field undergo a Hopf bifurcation in the PT-symmetry breaking process. By employing several different variants of the symmetries we propose many classes of new invariant extensions of these models and study their properties. The reduction of some of these models yields complex quantum mechanical models previously studied.Comment: 50 pages, 39 figures (compressed in order to comply with arXiv policy; higher resolutions maybe obtained from the authors upon request

    Active and passive shielding design optimization and technical solutions for deep sensitivity hard X-ray focusing telescopes

    Full text link
    The 10-100 keV region of the electromagnetic spectrum contains the potential for a dramatic improvement in our understanding of a number of key problems in high energy astrophysics. A deep inspection of the universe in this band is on the other hand still lacking because of the demanding sensitivity (fraction of microCrab in the 20-40 keV for 1 Ms integration time) and imaging (~15" angular resolution) requirements. The mission ideas currently being proposed are based on long focal length, grazing incidence, multi-layer optics, coupled with focal plane detectors with few hundreds microns spatial resolution capability. The required large focal lengths, ranging between 8 and 50 m, can be realized by means of extendable optical benches (as foreseen e.g. for the HEXIT-SAT, NEXT and NuSTAR missions) or formation flight scenarios (e.g. Simbol-X and XEUS). While the final telescope design will require a detailed trade-off analysis between all the relevant parameters (focal length, plate scale value, angular resolution, field of view, detector size, and sensitivity degradation due to detector dead area and telescope vignetting), extreme attention must be dedicated to the background minimization. In this respect, key issues are represented by the passive baffling system, which in case of large focal lengths requires particular design assessments, and by the active/passive shielding geometries and materials. In this work, the result of a study of the expected background for a hard X-ray telescope is presented, and its implication on the required sensitivity, together with the possible implementation design concepts for active and passive shielding in the framework of future satellite missions, are discussed.Comment: 13 pages, 6 figures. Proceedings of SPIE conference "Optics for EUV, X-Ray, and Gamma-Ray Astronomy II", San Diego (CA, USA), July 31st - August 4th, 2005, Vol. 5900. Full color figures are available at http://www.bo.iasf.cnr.it/~malaguti/papers/SPIE2005_1.ps.g

    Early versus late start of direct oral anticoagulants after acute ischaemic stroke linked to atrial fibrillation: an observational study and individual patient data pooled analysis

    Get PDF
    OBJECTIVE: The optimal timing to start direct oral anticoagulants (DOACs) after an acute ischaemic stroke (AIS) related to atrial fibrillation (AF) remains unclear. We aimed to compare early (≤5 days of AIS) versus late (>5 days of AIS) DOAC-start. METHODS: This is an individual patient data pooled analysis of eight prospective European and Japanese cohort studies. We included patients with AIS related to non-valvular AF where a DOAC was started within 30 days. Primary endpoints were 30-day rates of recurrent AIS and ICH. RESULTS: A total of 2550 patients were included. DOACs were started early in 1362 (53%) patients, late in 1188 (47%). During 212 patient-years, 37 patients had a recurrent AIS (1.5%), 16 (43%) before a DOAC was started; 6 patients (0.2%) had an ICH, all after DOAC-start. In the early DOAC-start group, 23 patients (1.7%) suffered from a recurrent AIS, while 2 patients (0.1%) had an ICH. In the late DOAC-start group, 14 patients (1.2%) suffered from a recurrent AIS; 4 patients (0.3%) suffered from ICH. In the propensity score-adjusted comparison of late versus early DOAC-start groups, there was no statistically significant difference in the hazard of recurrent AIS (aHR=1.2, 95% CI 0.5 to 2.9, p=0.69), ICH (aHR=6.0, 95% CI 0.6 to 56.3, p=0.12) or any stroke. CONCLUSIONS: Our results do not corroborate concerns that an early DOAC-start might excessively increase the risk of ICH. The sevenfold higher risk of recurrent AIS than ICH suggests that an early DOAC-start might be reasonable, supporting enrolment into randomised trials comparing an early versus late DOAC-start

    Early Endarterectomy Carries a Lower Procedural Risk Than Early Stenting in Patients With Symptomatic Stenosis of the Internal Carotid Artery: Results From 4 Randomized Controlled Trials.

    Get PDF
    Patients undergoing carotid endarterectomy (CEA) for symptomatic stenosis of the internal carotid artery benefit from early intervention. Heterogeneous data are available on the influence of timing of carotid artery stenting (CAS) on procedural risk. We investigated the association between timing of treatment (0-7 days and >7 days after the qualifying neurological event) and the 30-day risk of stroke or death after CAS or CEA in a pooled analysis of individual patient data from 4 randomized trials by the Carotid Stenosis Trialists' Collaboration. Analyses were done per protocol. To obtain combined estimates, logistic mixed models were applied. Among a total of 4138 patients, a minority received their allocated treatment within 7 days after symptom onset (14% CAS versus 11% CEA). Among patients treated within 1 week of symptoms, those treated by CAS had a higher risk of stroke or death compared with those treated with CEA: 8.3% versus 1.3%, risk ratio, 6.7; 95% confidence interval, 2.1 to 21.9 (adjusted for age at treatment, sex, and type of qualifying event). For interventions after 1 week, CAS was also more hazardous than CEA: 7.1% versus 3.6%, adjusted risk ratio, 2.0; 95% confidence interval, 1.5 to 2.7 (P value for interaction with time interval 0.06). In randomized trials comparing stenting with CEA for symptomatic carotid artery stenosis, CAS was associated with a substantially higher periprocedural risk during the first 7 days after the onset of symptoms. Early surgery is safer than stenting for preventing future stroke. URL: http://www.clinicaltrials.gov. Unique identifier: NCT00190398; URL: http://www.controlled-trials.com. Unique identifier: ISRCTN57874028; URL: http://www.controlled-trials.com. Unique identifier: ISRCTN25337470; URL: http://www.clinicaltrials.gov. Unique identifier: NCT00004732

    Comparative analysis of homology models of the Ah receptor ligand binding domain: Verification of structure-function predictions by site-directed mutagenesis of a nonfunctional receptor

    Get PDF
    The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates the biological and toxic effects of a wide variety of structurally diverse chemicals, including the toxic environmental contaminant 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). While significant interspecies differences in AHR ligand binding specificity, selectivity, and response have been observed, the structural determinants responsible for those differences have not been determined, and homology models of the AHR ligand-binding domain (LBD) are available for only a few species. Here we describe the development and comparative analysis of homology models of the LBD of 16 AHRs from 12 mammalian and nonmammalian species and identify the specific residues contained within their ligand binding cavities. The ligand-binding cavity of the fish AHR exhibits differences from those of mammalian and avian AHRs, suggesting a slightly different TCDD binding mode. Comparison of the internal cavity in the LBD model of zebrafish (zf) AHR2, which binds TCDD with high affinity, to that of zfAHR1a, which does not bind TCDD, revealed that the latter has a dramatically shortened binding cavity due to the side chains of three residues (Tyr296, Thr386, and His388) that reduce the amount of internal space available to TCDD. Mutagenesis of two of these residues in zfAHR1a to those present in zfAHR2 (Y296H and T386A) restored the ability of zfAHR1a to bind TCDD and to exhibit TCDD-dependent binding to DNA. These results demonstrate the importance of these two amino acids and highlight the predictive potential of comparative analysis of homology models from diverse species. The availability of these AHR LBD homology models will facilitate in-depth comparative studies of AHR ligand binding and ligand-dependent AHR activation and provide a novel avenue for examining species-specific differences in AHR responsiveness. © 2013 American Chemical Society

    Visually Guided Avoidance in the Chameleon (Chamaeleo chameleon): Response Patterns and Lateralization

    Get PDF
    The common chameleon, Chamaeleo chameleon, is an arboreal lizard with highly independent, large-amplitude eye movements. In response to a moving threat, a chameleon on a perch responds with distinct avoidance movements that are expressed in its continuous positioning on the side of the perch distal to the threat. We analyzed body-exposure patterns during threat avoidance for evidence of lateralization, that is, asymmetry at the functional/behavioral levels. Chameleons were exposed to a threat approaching horizontally from the left or right, as they held onto a vertical pole that was either wider or narrower than the width of their head, providing, respectively, monocular or binocular viewing of the threat. We found two equal-sized sub-groups, each displaying lateralization of motor responses to a given direction of stimulus approach. Such an anti-symmetrical distribution of lateralization in a population may be indicative of situations in which organisms are regularly exposed to crucial stimuli from all spatial directions. This is because a bimodal distribution of responses to threat in a natural population will reduce the spatial advantage of predators

    Metadynamics surfing on topology barriers: the CP N 121 case

    Get PDF
    As one approaches the continuum limit, QCD systems, investigated via numerical simulations, remain trapped in sectors of field space with fixed topological charge. As a consequence the numerical studies of physical quantities may give biased results. The same is true in the case of two dimensional CPN 121 models. In this paper we show that metadynamics, when used to simulate CPN 121, allows to address efficiently this problem. By studying CP20 we show that we are able to reconstruct the free energy of the topological charge F (Q) and compute the topological susceptibility as a function of the coupling and of the volume. This is a very important physical quantity in studies of the dynamics of the \u3b8 vacuum and of the axion. This method can in principle be extended to QCD applications. \ua9 2016, The Author(s)
    • …
    corecore