33 research outputs found

    Insulator-to-metal crossover induced by local spin fluctuations in strongly correlated systems

    Full text link
    We study the simplified Hubbard (SH) model in the presence of a transverse field in the infinite dimension limit. The relevant one-particle Green's functions of the model are obtained by means a perturbative treatment of the hopping and of the transverse field around the atomic limit. We consider an analytical solution for the impurity problem. It is shown that this solution is very accurate in describing the spectral properties of the heavy-particles of the SH for intermediate and strong values of the on-site Coulomb interaction UU. We find that for large values of UU an insulator-metal transition takes place as a function of the transverse field. We analyze the metallic phase through the behavior of the density of states and of the optical conductivity and static resistivity. Our results for the latter quantity agree with what is observed in experiments on Bi2Sr2CuOyBi_2Sr_2CuO_y.Comment: 6 pages, 5 figures, to appear in Journal of Physics: Condensed Matte

    From ferromagnetism to spin-density wave: Magnetism in the two channel periodic Anderson model

    Full text link
    The magnetic properties of the two-channel periodic Anderson model for uranium ions, comprised of a quadrupolar and a magnetic doublet are investigated through the crossover from the mixed-valent to the stable moment regime using dynamical mean field theory. In the mixed-valent regime ferromagnetism is found for low carrier concentration on a hyper-cubic lattice. The Kondo regime is governed by band magnetism with small effective moments and an ordering vector \q close to the perfect nesting vector. In the stable moment regime nearest neighbour anti-ferromagnetism dominates for less than half band filling and a spin density wave transition for larger than half filling. TmT_m is governed by the renormalized RKKY energy scale \mu_{eff}^2 ^2 J^2\rho_0(\mu).Comment: 4 pages, RevTeX, 3 eps figure

    Electronic response of aligned multishell carbon nanotubes

    Full text link
    We report calculations of the effective electronic response of aligned multishell carbon nanotubes. A local graphite-like dielectric tensor is assigned to every point of the multishell tubules, and the effective transverse dielectric function of the composite is computed by solving Maxwell's equations. Calculations of both real and imaginary parts of the effective dielectric function are presented, for various values of the filling fraction and the ratio of the internal and external radii of hollow tubules. Our full calculations indicate that the experimentally measured macroscopic dielectric function of carbon nanotube materials is the result of a strong electromagnetic coupling between the tubes, which cannot be accounted for with the use of simplified effective medium theories. The presence of surface plasmons is investigated, and both optical absorption cross sections and energy-loss spectra of aligned tubules are calculated.Comment: 4 pages, 4 figures, to appear in Phys. Rev.

    Far-infrared vibrational properties of linear C60 polymers: A comparison between neutral and charged materials

    Get PDF
    We report the far-infrared transmittance spectrum of a pure phase of the orthorhombic high-temperature and high-pressure C-60 polymer and compare the results with a previously published spectrum of the charged RbC60 orthorhombic polymer. Assignments for both spectra are made with the aid of first-principles quantum molecular dynamics simulations of the two materials. We find that the striking spectral differences between the neutral and charged linear fullerene polymers can be fully accounted for by charge effects on the C-60 ball

    Infrared and optical properties of pure and cobalt-doped LuNi_2B_2C

    Full text link
    We present optical conductivity data for Lu(Ni1−x_{1-x}Cox_x)2_2B2_2C over a wide range of frequencies and temperatures for x=0 and x=0.09. Both materials show evidence of being good Drude metals with the infrared data in reasonable agreement with dc resistivity measurements at low frequencies. An absorption threshold is seen at approximately 700 cm-1. In the cobalt-doped material we see a superconducting gap in the conductivity spectrum with an absorption onset at 24 +/- 2 cm-1 = 3.9$ +/- 0.4 k_BT_c suggestive of weak to moderately strong coupling. The pure material is in the clean limit and no gap can be seen. We discuss the data in terms of the electron-phonon interaction and find that it can be fit below 600 cm-1 with a plasma frequency of 3.3 eV and an electron-phonon coupling constant lambda_{tr}=0.33 using an alpha^{2}F(omega) spectrum fit to the resistivity.Comment: 10 pages with 10 embedded figures, submitted to PR

    Evidence for distinct polymer chain orientations in KC60 and RbC60

    Full text link
    The KC60 and RbC60 polymer phases exhibit contrasting electronic properties while powder diffraction studies have revealed no definite structural difference. We have performed single crystal X-ray diffraction and diffuse scattering studies of these compounds. It is found that KC60 and RbC60 possess different chain orientations about their axes, which are described by distinct space groups Pmnn and I2/m, respectively. Such a structural difference will be of great importance to a complete understanding of the physical properties.Comment: To be published in Phys. Rev. Let

    Upper critical field pecularities of superconducting YNi2B2C and LuNi2B2C

    Full text link
    We present new upper critical field Hc2(T) data in a broad temperature region from 0.3K to Tc for LuNi2B2C and YNi2B2C single crystals with well characterized low impurity scattering rates. The absolute values for all T, in particular Hc2(0), and the sizeable positive curvature (PC) of Hc2(T) at high and intermediate T are explained quantitatively within an effective two-band model. The failure of the isotropic single band approach is discussed in detail. Supported by de Haas van Alphen data, the superconductivity reveals direct insight into details of the electronic structure. The observed maximal PC near Tc gives strong evidence for clean limit type II superconductors.Comment: 4 pages, 2 figures, Phys. Rev. Lett. accepte

    The polymer phase of the TDAE-C60_{60} organic ferromagnet

    Get PDF
    The high-pressure Electron Spin Resonance (ESR) measurements were preformed on TDAE-C60_{60} single crystals and stability of the polymeric phase was established in the P−TP - T parameter space. At 7 kbar the system undergoes a ferromagnetic to paramagnetic phase transition due to the pressure-induced polymerization. The polymeric phase remains stable after the pressure release. The depolymerization of the pressure-induced phase was observed at the temperature of 520 K. Below room temperature, the polymeric phase behaves as a simple Curie-type insulator with one unpaired electron spin per chemical formula. The TDAE+^+ donor-related unpaired electron spins, formerly ESR-silent, become active above the temperature of 320 K and the Curie-Weiss behavior is re-established.Comment: Submitted to Phys. Rev.

    Quasiparticle Inelastic Lifetime from Paramagnons in Disordered Superconductors

    Full text link
    The paramagnon contribution to the quasiparticle inelastic scattering rate in disordered superconductors is presented. Using Anderson's exact eigenstate formalism, it is shown that the scattering rate is Stoner enhanced and is further enhanced by the disorder relative to the clean case in a manner similar to the disorder enhancement of the long-range Coulomb contribution. The results are discussed in connection with the possibility of conventional or unconventional superconductivity in the borocarbides. The results are compared to recent tunneling experiments on LuNi2_{2}B2_{2}C.Comment: 5 pages, no figure

    A study of the superconducting gap in RNi2_2B2_2C (R = Y, Lu) single crystals by inelastic light scattering

    Full text link
    Superconductivity-induced changes in the electronic Raman scattering response were observed for the RNi2_2B2_2C (R = Y, Lu) system in different scattering geometries. In the superconducting state, 2Δ\Delta-like peaks were observed in A1g_{1g}, B1g_{1g}, and B2g_{2g} spectra from single crystals. The peaks in A1g_{1g} and B2g_{2g} symmetries are significantly sharper and stronger than the peak in B1g_{1g} symmetry. The temperature dependence of the frequencies of the 2Δ\Delta-like peaks shows typical BCS-type behavior, but the apparent values of the 2Δ2\Delta gap are strongly anisotropic for both systems. In addition, for both YNi2_2B2_2C and LuNi2_2B2_2C systems, there exists reproducible scattering strength below the 2Δ2\Delta gap which is roughly linear to the frequency in B1g_{1g} and B2g_{2g} symmetries. This discovery of scattering below the gap in non-magnetic borocarbide superconductors, which are thought to be conventional BCS-type superconductors, is a challenge for current understanding of superconductivity in this system.Comment: Added text, changed a figure, and added references. Will appear in Phys. Rev.
    corecore