Abstract

Superconductivity-induced changes in the electronic Raman scattering response were observed for the RNi2_2B2_2C (R = Y, Lu) system in different scattering geometries. In the superconducting state, 2Δ\Delta-like peaks were observed in A1g_{1g}, B1g_{1g}, and B2g_{2g} spectra from single crystals. The peaks in A1g_{1g} and B2g_{2g} symmetries are significantly sharper and stronger than the peak in B1g_{1g} symmetry. The temperature dependence of the frequencies of the 2Δ\Delta-like peaks shows typical BCS-type behavior, but the apparent values of the 2Δ2\Delta gap are strongly anisotropic for both systems. In addition, for both YNi2_2B2_2C and LuNi2_2B2_2C systems, there exists reproducible scattering strength below the 2Δ2\Delta gap which is roughly linear to the frequency in B1g_{1g} and B2g_{2g} symmetries. This discovery of scattering below the gap in non-magnetic borocarbide superconductors, which are thought to be conventional BCS-type superconductors, is a challenge for current understanding of superconductivity in this system.Comment: Added text, changed a figure, and added references. Will appear in Phys. Rev.

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020