525 research outputs found
Recommended from our members
Epidemiology of musculoskeletal upper extremity ambulatory surgery in the United States
Background: Musculoskeletal disorders of the upper extremity are common reasons for patients to seek care and undergo ambulatory surgery. The objective of our study was to assess the overall and age-adjusted utilization rates of rotator cuff repair, shoulder arthroscopy performed for indications other than rotator cuff repair, carpal tunnel release, and wrist arthroscopy performed for indications other than carpal tunnel release in the United States. We also compared demographics, indications, and operating room time for these procedures. Methods: We used the 2006 National Survey of Ambulatory Surgery to estimate the number of procedures of interest performed in the United States in 2006. We combined these data with population size estimates from the 2006 U.S. Census Bureau to calculate rates per 10,000 persons. Results: An estimated 272,148 (95% confidence intervals (CI) = 218,994, 325,302) rotator cuff repairs, 257,541 (95% CI = 185,268, 329,814) shoulder arthroscopies excluding those for cuff repairs, 576,924 (95% CI = 459,239, 694,609) carpal tunnel releases, and 25,250 (95% CI = 17,304, 33,196) wrist arthroscopies excluding those for carpal tunnel release were performed. Overall, carpal tunnel release had the highest utilization rate (37.3 per 10,000 persons in persons of age 45–64 years; 38.7 per 10,000 persons in 65–74 year olds, and; 44.2 per 10,000 persons in the age-group 75 years and older). Among those undergoing rotator cuff repairs, those in the age-group 65–74 had the highest utilization (28.3 per 10,000 persons). The most common indications for non-cuff repair related shoulder arthroscopy were impingement syndrome, periarthritis, bursitis, and instability/SLAP tears. Non-carpal tunnel release related wrist arthroscopy was most commonly performed for ligament sprains and diagnostic arthroscopies for pain and articular cartilage disorders. Conclusions: Our data shows substantial age and demographic differences in the utilization of these commonly performed upper extremity ambulatory procedures. While over one million upper extremity procedures of interest were performed, evidence-based clinical indications for these procedures remain poorly defined
Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands.
Alloimmune T cell responses induce graft-versus-host disease (GVHD), a serious complication of allogeneic bone marrow transplantation (allo-BMT). Although Notch signaling mediated by Delta-like 1/4 (DLL1/4) Notch ligands has emerged as a major regulator of GVHD pathogenesis, little is known about the timing of essential Notch signals and the cellular source of Notch ligands after allo-BMT. Here, we have shown that critical DLL1/4-mediated Notch signals are delivered to donor T cells during a short 48-hour window after transplantation in a mouse allo-BMT model. Stromal, but not hematopoietic, cells were the essential source of Notch ligands during in vivo priming of alloreactive T cells. GVHD could be prevented by selective inactivation of Dll1 and Dll4 in subsets of fibroblastic stromal cells that were derived from chemokine Ccl19-expressing host cells, including fibroblastic reticular cells and follicular dendritic cells. However, neither T cell recruitment into secondary lymphoid organs nor initial T cell activation was affected by Dll1/4 loss. Thus, we have uncovered a pathogenic function for fibroblastic stromal cells in alloimmune reactivity that can be dissociated from their homeostatic functions. Our results reveal what we believe to be a previously unrecognized Notch-mediated immunopathogenic role for stromal cell niches in secondary lymphoid organs after allo-BMT and define a framework of early cellular and molecular interactions that regulate T cell alloimmunity
Pig Embryonic Pancreatic Tissue as a Source for Transplantation in Diabetes: Transient Treatment With Anti-LFA1, Anti-CD48, and FTY720 Enables Long-Term Graft Maintenance in Mice With Only Mild Ongoing Immunosuppression
Ex vivo Inhibition of NF-κB Signaling in Alloreactive T-cells Prevents Graft-Versus-Host Disease
The ex vivo induction of alloantigen-specific hyporesponsiveness by costimulatory pathway blockade or exposure to immunoregulatory cytokines has been shown to inhibit proliferation, IL-2 production, and the GVHD capacity of adoptively transferred T-cells. We hypothesized that inhibition of the intracellular NF-κB pathway in alloreactive T-cells, which is critical for T cell activation events including IL-2 transcription, could lead to alloantigen hyporesponsiveness and loss of GVHD capacity. We demonstrate that treatment of mixed lymphocyte reaction (MLR) cultures with PS1145, a potent inhibitor of NF-κB activation, can induce T cell hyporesponsiveness to alloantigen in primary and secondary responses while preserving in vitro responses to potent mitogenic stimulation. GVHD lethality in recipients of ex vivo PS1145-treated cells was profoundly inhibited. Parking of control- or PS1145- treated MLR cells in syngeneic Rag−/− recipients resulted in intact contact hypersensitivity responses. However, GVHD lethality capacity also was restored, suggesting that lymphopenic expansion uncoupled alloantigen hyporesponsiveness. These results indicate that the NF-κB pathway is a critical regulator of alloresponses and provide a novel small molecule inhibitor based approach that is effective in preventing early post-transplant GVHD lethality but that also permits donor T cell responses to recover after a period of lymphopenic expansion
A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease
Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell–mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the β2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4β7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of β2 integrin–expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality. The pathogenic effect of this CD4+ T cell population critically depended on coexpression of the IL-23 receptor, which was required for maximal inflammatory effects. Non–Foxp3-expressing CD4+ T cells produced IL-10, which regulated colonic inflammation and attenuated lethality in the absence of functional CD4+Foxp3+ T cells. Thus, the coordinate expression of CD11c and the IL-23 receptor defines an IL-10–regulated, colitogenic memory CD4+ T cell subset that is poised to initiate inflammation when there is loss of tolerance and breakdown of mucosal barriers
Activation-induced thrombospondin-4 works with thrombospondin-1 to build cytotoxic supramolecular attack particles
Cytotoxic attack particles released by CTLs and NK cells include diverse phospholipid membrane and glycoprotein encapsulated entities that contribute to target cell killing. Supramolecular attack particles (SMAPs) are one type of particle characterized by a cytotoxic core enriched in granzymes and perforin surrounded by a proteinaceous shell including thrombospondin (TSP)-1. TSP-4 was also detected in bulk analysis of SMAPs released by CTLs; however, it has not been investigated whether TSP-4 contributes to distinct SMAP types or the same SMAP type as TSP-1 and, if in the same type of SMAP, whether TSP-4 and TSP-1 cooperate or compete. Here, we observed that TSP-4 expression increased upon CD8+ T cell activation while, surprisingly, TSP-1 was down-regulated. Correlative Light and Electron Microscopy and Stimulated Emission Depletion microscopy localized TSP-4 and TSP-1 in SMAP-containing multicore granules. Superresolution dSTORM revealed that TSP-4 and TSP-1 are usually enriched in the same SMAPs while particles with single-positive shells are rare. Retention Using Selective Hooks assays showed that TSP-4 localizes to the lytic granules faster than TSP-1 and promotes its accumulation therein. TSP-4 contributed to direct CTL-mediated killing, as previously shown for TSP-1. TSP-4 and TSP-1 were both required for latent SMAP-mediated cell killing, in which released SMAPs kill targets after removal of the CTLs. Of note, we found that chronic lymphocytic leukemia (CLL) cell culture supernatants suppressed expression of TSP-4 in CTL and latent SMAP-mediated killing. These results identify TSP-4 as a functionally important component of SMAPs and suggest that SMAPs may be targeted for immune suppression by CLL
Polyamines and eIF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation
How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis
L-Selectin Is Dispensable for T Regulatory Cell Function Postallogeneic Bone Marrow Transplantation: CD62L−/− Tregs Inhibit Acute GvHD
In murine models, the adoptive transfer of CD4+/CD25+ regulatory T cells (Tregs) inhibited graft-versus-host disease (GvHD). Previous work has indicated a critical role for the adhesion molecule L-selectin (CD62L) in the function of Tregs in preventing GvHD. Here we examined the capacity of naive wild-type (WT), CD62L−/− and ex vivo expanded CD62LLo Tregs to inhibit acute GvHD. Surprisingly, we found that CD62L−/− Tregs were potent suppressors of GvHD, whereas CD62LLo Tregs were unable to inhibit disease despite being functionally competent to suppress allo T cell responses in vitro. Concomitant with improved outcomes, WT and CD62L−/− Tregs significantly reduced liver pathology and systemic pro-inflammatory cytokine production, although CD62L−/− Tregs were less effective in reducing lung pathology. While accumulation of CD62L−/− Tregs in GvHD target organs was equivalent to WT Tregs, CD62L−/− Tregs did not migrate as well as WT Tregs to peripheral lymph nodes (PLNs) over the first 2 weeks posttransplantation. This work demonstrated that CD62L was dispensable for Treg-mediated protection from GvHD
Circulating endothelial cell count: a reliable marker of endothelial damage in patients undergoing hematopoietic stem cell transplantation
The physio-pathologic interrelationships between endothelium and GvHD have been better elucidated and have led to definition of the entity 'endothelial GvHD' as an essential early phase prior to the clinical presentation of acute GvHD. Using the CellSearch system, we analyzed circulating endothelial cells (CEC) in 90 allogeneic hematopoietic stem cell transplantation (allo-HSCT) patients at the following time-points: T1 (pre-conditioning), T2 (pre-transplant), T3 (engraftment), T4 (onset of GvHD) and T5 (1 week after steroid treatment). Although CEC changes in allo-HSCT represent a dynamic phenomenon influenced by many variables (that is, conditioning, immunosuppressive treatments, engraftment syndrome and infections), we showed that CEC peaks were constantly seen at onset of acute GvHD and invariably returned to pre-transplant values after treatment response. Since we showed that CEC changes during allo-HSCT has rapid kinetics that may be easily missed if blood samples are drawn at pre-fixed time-points, we rather suggest an 'on demand' evaluation of CEC counts right at onset of GvHD clinical symptoms to possibly help differentiate GvHD from other non-endothelial complications. We confirm that CEC changes are a suitable biomarker to monitor endothelial damage in patients undergoing allo-transplantation and hold the potential to become a useful tool to support GvHD diagnosis (ClinicalTrials.gov NCT02064972).Bone Marrow Transplantation advance online publication, 11 September 2017; doi:10.1038/bmt.2017.194
Recommended from our members
Targeting PI3Kδ function for amelioration of murine chronic graft-versus-host disease
Chronic graft-versus-host disease (cGVHD) is a leading cause of morbidity and mortality following allotransplant. Activated donor effector T cells can differentiate into pathogenic T helper (Th)-17 cells and germinal center (GC)-promoting T follicular helper (Tfh) cells, resulting in cGVHD. Phosphoinositide-3-kinase-δ (PI3Kδ), a lipid kinase, is critical for activated T cell survival, proliferation, differentiation, and metabolism. We demonstrate PI3Kδ activity in donor T cells that become Tfh cells is required for cGVHD in a nonsclerodermatous multiorgan system disease model that includes bronchiolitis obliterans (BO), dependent upon GC B cells, Tfhs, and counterbalanced by T follicular regulatory cells, each requiring PI3Kδ signaling for function and survival. Although B cells rely on PI3Kδ pathway signaling and GC formation is disrupted resulting in a substantial decrease in Ig production, PI3Kδ kinase-dead mutant donor bone marrow-derived GC B cells still supported BO cGVHD generation. A PI3Kδ-specific inhibitor, compound GS-649443, that has superior potency to idelalisib while maintaining selectivity, reduced cGVHD in mice with active disease. In a Th1-dependent and Th17-associated scleroderma model, GS-649443 effectively treated mice with active cGVHD. These data provide a foundation for clinical trials of US Food and Drug Administration (FDA)-approved PI3Kδ inhibitors for cGVHD therapy in patients
- …
