525 research outputs found

    Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands.

    Get PDF
    Alloimmune T cell responses induce graft-versus-host disease (GVHD), a serious complication of allogeneic bone marrow transplantation (allo-BMT). Although Notch signaling mediated by Delta-like 1/4 (DLL1/4) Notch ligands has emerged as a major regulator of GVHD pathogenesis, little is known about the timing of essential Notch signals and the cellular source of Notch ligands after allo-BMT. Here, we have shown that critical DLL1/4-mediated Notch signals are delivered to donor T cells during a short 48-hour window after transplantation in a mouse allo-BMT model. Stromal, but not hematopoietic, cells were the essential source of Notch ligands during in vivo priming of alloreactive T cells. GVHD could be prevented by selective inactivation of Dll1 and Dll4 in subsets of fibroblastic stromal cells that were derived from chemokine Ccl19-expressing host cells, including fibroblastic reticular cells and follicular dendritic cells. However, neither T cell recruitment into secondary lymphoid organs nor initial T cell activation was affected by Dll1/4 loss. Thus, we have uncovered a pathogenic function for fibroblastic stromal cells in alloimmune reactivity that can be dissociated from their homeostatic functions. Our results reveal what we believe to be a previously unrecognized Notch-mediated immunopathogenic role for stromal cell niches in secondary lymphoid organs after allo-BMT and define a framework of early cellular and molecular interactions that regulate T cell alloimmunity

    Ex vivo Inhibition of NF-κB Signaling in Alloreactive T-cells Prevents Graft-Versus-Host Disease

    Get PDF
    The ex vivo induction of alloantigen-specific hyporesponsiveness by costimulatory pathway blockade or exposure to immunoregulatory cytokines has been shown to inhibit proliferation, IL-2 production, and the GVHD capacity of adoptively transferred T-cells. We hypothesized that inhibition of the intracellular NF-κB pathway in alloreactive T-cells, which is critical for T cell activation events including IL-2 transcription, could lead to alloantigen hyporesponsiveness and loss of GVHD capacity. We demonstrate that treatment of mixed lymphocyte reaction (MLR) cultures with PS1145, a potent inhibitor of NF-κB activation, can induce T cell hyporesponsiveness to alloantigen in primary and secondary responses while preserving in vitro responses to potent mitogenic stimulation. GVHD lethality in recipients of ex vivo PS1145-treated cells was profoundly inhibited. Parking of control- or PS1145- treated MLR cells in syngeneic Rag−/− recipients resulted in intact contact hypersensitivity responses. However, GVHD lethality capacity also was restored, suggesting that lymphopenic expansion uncoupled alloantigen hyporesponsiveness. These results indicate that the NF-κB pathway is a critical regulator of alloresponses and provide a novel small molecule inhibitor based approach that is effective in preventing early post-transplant GVHD lethality but that also permits donor T cell responses to recover after a period of lymphopenic expansion

    A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease

    Get PDF
    Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell–mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the β2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4β7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of β2 integrin–expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality. The pathogenic effect of this CD4+ T cell population critically depended on coexpression of the IL-23 receptor, which was required for maximal inflammatory effects. Non–Foxp3-expressing CD4+ T cells produced IL-10, which regulated colonic inflammation and attenuated lethality in the absence of functional CD4+Foxp3+ T cells. Thus, the coordinate expression of CD11c and the IL-23 receptor defines an IL-10–regulated, colitogenic memory CD4+ T cell subset that is poised to initiate inflammation when there is loss of tolerance and breakdown of mucosal barriers

    Activation-induced thrombospondin-4 works with thrombospondin-1 to build cytotoxic supramolecular attack particles

    Get PDF
    Cytotoxic attack particles released by CTLs and NK cells include diverse phospholipid membrane and glycoprotein encapsulated entities that contribute to target cell killing. Supramolecular attack particles (SMAPs) are one type of particle characterized by a cytotoxic core enriched in granzymes and perforin surrounded by a proteinaceous shell including thrombospondin (TSP)-1. TSP-4 was also detected in bulk analysis of SMAPs released by CTLs; however, it has not been investigated whether TSP-4 contributes to distinct SMAP types or the same SMAP type as TSP-1 and, if in the same type of SMAP, whether TSP-4 and TSP-1 cooperate or compete. Here, we observed that TSP-4 expression increased upon CD8+ T cell activation while, surprisingly, TSP-1 was down-regulated. Correlative Light and Electron Microscopy and Stimulated Emission Depletion microscopy localized TSP-4 and TSP-1 in SMAP-containing multicore granules. Superresolution dSTORM revealed that TSP-4 and TSP-1 are usually enriched in the same SMAPs while particles with single-positive shells are rare. Retention Using Selective Hooks assays showed that TSP-4 localizes to the lytic granules faster than TSP-1 and promotes its accumulation therein. TSP-4 contributed to direct CTL-mediated killing, as previously shown for TSP-1. TSP-4 and TSP-1 were both required for latent SMAP-mediated cell killing, in which released SMAPs kill targets after removal of the CTLs. Of note, we found that chronic lymphocytic leukemia (CLL) cell culture supernatants suppressed expression of TSP-4 in CTL and latent SMAP-mediated killing. These results identify TSP-4 as a functionally important component of SMAPs and suggest that SMAPs may be targeted for immune suppression by CLL

    Polyamines and eIF5A Hypusination Modulate Mitochondrial Respiration and Macrophage Activation

    Get PDF
    How cells adapt metabolism to meet demands is an active area of interest across biology. Among a broad range of functions, the polyamine spermidine is needed to hypusinate the translation factor eukaryotic initiation factor 5A (eIF5A). We show here that hypusinated eIF5A (eIF5AH) promotes the efficient expression of a subset of mitochondrial proteins involved in the TCA cycle and oxidative phosphorylation (OXPHOS). Several of these proteins have mitochondrial targeting sequences (MTSs) that in part confer an increased dependency on eIF5AH. In macrophages, metabolic switching between OXPHOS and glycolysis supports divergent functional fates stimulated by activation signals. In these cells, hypusination of eIF5A appears to be dynamically regulated after activation. Using in vivo and in vitro models, we show that acute inhibition of this pathway blunts OXPHOS-dependent alternative activation, while leaving aerobic glycolysis-dependent classical activation intact. These results might have implications for therapeutically controlling macrophage activation by targeting the polyamine-eIF5A-hypusine axis

    L-Selectin Is Dispensable for T Regulatory Cell Function Postallogeneic Bone Marrow Transplantation: CD62L−/− Tregs Inhibit Acute GvHD

    Get PDF
    In murine models, the adoptive transfer of CD4+/CD25+ regulatory T cells (Tregs) inhibited graft-versus-host disease (GvHD). Previous work has indicated a critical role for the adhesion molecule L-selectin (CD62L) in the function of Tregs in preventing GvHD. Here we examined the capacity of naive wild-type (WT), CD62L−/− and ex vivo expanded CD62LLo Tregs to inhibit acute GvHD. Surprisingly, we found that CD62L−/− Tregs were potent suppressors of GvHD, whereas CD62LLo Tregs were unable to inhibit disease despite being functionally competent to suppress allo T cell responses in vitro. Concomitant with improved outcomes, WT and CD62L−/− Tregs significantly reduced liver pathology and systemic pro-inflammatory cytokine production, although CD62L−/− Tregs were less effective in reducing lung pathology. While accumulation of CD62L−/− Tregs in GvHD target organs was equivalent to WT Tregs, CD62L−/− Tregs did not migrate as well as WT Tregs to peripheral lymph nodes (PLNs) over the first 2 weeks posttransplantation. This work demonstrated that CD62L was dispensable for Treg-mediated protection from GvHD

    Circulating endothelial cell count: a reliable marker of endothelial damage in patients undergoing hematopoietic stem cell transplantation

    Get PDF
    The physio-pathologic interrelationships between endothelium and GvHD have been better elucidated and have led to definition of the entity 'endothelial GvHD' as an essential early phase prior to the clinical presentation of acute GvHD. Using the CellSearch system, we analyzed circulating endothelial cells (CEC) in 90 allogeneic hematopoietic stem cell transplantation (allo-HSCT) patients at the following time-points: T1 (pre-conditioning), T2 (pre-transplant), T3 (engraftment), T4 (onset of GvHD) and T5 (1 week after steroid treatment). Although CEC changes in allo-HSCT represent a dynamic phenomenon influenced by many variables (that is, conditioning, immunosuppressive treatments, engraftment syndrome and infections), we showed that CEC peaks were constantly seen at onset of acute GvHD and invariably returned to pre-transplant values after treatment response. Since we showed that CEC changes during allo-HSCT has rapid kinetics that may be easily missed if blood samples are drawn at pre-fixed time-points, we rather suggest an 'on demand' evaluation of CEC counts right at onset of GvHD clinical symptoms to possibly help differentiate GvHD from other non-endothelial complications. We confirm that CEC changes are a suitable biomarker to monitor endothelial damage in patients undergoing allo-transplantation and hold the potential to become a useful tool to support GvHD diagnosis (ClinicalTrials.gov NCT02064972).Bone Marrow Transplantation advance online publication, 11 September 2017; doi:10.1038/bmt.2017.194
    corecore