8,229 research outputs found
Formation and stability of a two-dimensional nickel silicide on Ni (111) an Auger, LEED, STM, and high-resolution photoemission Study
Using low energy electron diffraction (LEED), Auger electron spectroscopy
(AES), scanning tunnelling microscopy (STM) and high resolution photo-electron
spectroscopy (HR-PES) techniques we have studied the annealing effect of one
silicon monolayer deposited at room temperature onto a Ni (111) substrate. The
variations of the Si surface concentration, recorded by AES at 300{\deg}C and
400{\deg}C, show at the beginning a rapid Si decreasing followed by a slowing
down up to a plateau equivalent to about 1/3 silicon monolayer. STM images and
LEED patterns, both recorded at room temperature just after annealing, reveal
the formation of an ordered hexagonal superstructure(rot3xrot3)R30{\deg}-type.
From these observations and from a quantitative analysis of HR-PES data,
recorded before and after annealing, we propose that the (rot3 x
rot3)R30{\deg}superstructure corresponds to a two dimensional (2D) Ni2Si
surface silicide.Comment: Journal Physical Review B (2012
Theoretical correlation between possible evidences of neutrino chiral oscillations and polarization measurements
Reporting about the formalism with the Dirac equation we describe the
dynamics of chiral oscillations for a fermionic particle non-minimally coupling
with an external magnetic field. For massive particles, the chirality and
helicity quantum numbers represent different physical quantities of
representative importance in the study of chiral interactions, in particular,
in the context of neutrino physics. After solving the interacting Hamiltonian
(Dirac) equation for the corresponding {\em fermionic} Dirac-{\em type}
particle (neutrino) and quantifying chiral oscillations in the Dirac wave
packet framework, we avail the possibility of determining realistic neutrino
chirality conversion rates by means of (helicity) polarization measurements. We
notice that it can become feasible for some particular magnetic field
configurations with large values of {\boldmath} orthogonal to the direction
of the propagating particle.Comment: 12 pages, 2 figure
Accurate calculation of polarization-related quantities in semiconductors
We demonstrate that polarization-related quantities in semiconductors can be
predicted accurately from first-principles calculations using the appropriate
approach to the problem, the Berry-phase polarization theory. For III-V
nitrides, our test case, we find polarizations, polarization differences
between nitride pairs, and piezoelectric constants quite close to their
previously established values. Refined data are nevertheless provided for all
the relevant quantities.Comment: RevTeX 4 pages, no figure
Non-linear macroscopic polarization in III-V nitride alloys
We study the dependence of macroscopic polarization on composition and strain
in wurtzite III-V nitride ternary alloys using ab initio density-functional
techniques. The spontaneous polarization is characterized by a large bowing,
strongly dependent on the alloy microscopic structure. The bowing is due to the
different response of the bulk binaries to hydrostatic pressure, and to
internal strain effects (bond alternation). Disorder effects are instead minor.
Deviations from parabolicity (simple bowing) are of order 10 % in the most
extreme case of AlInN alloy, much less at all other compositions. Piezoelectric
polarization is also strongly non-linear. At variance with the spontaneous
component, this behavior is independent of microscopic alloy structure or
disorder effects, and due entirely to the non-linear strain dependence of the
bulk piezoelectric response. It is thus possible to predict the piezoelectric
polarization for any alloy composition using the piezoelectricity of the parent
binaries.Comment: RevTex 7 pages, 7 postscript figures embedde
Additional time-dependent phase in the flavor-conversion formulas
In the framework of intermediate wave-packets for treating flavor
oscillations, we quantify the modifications which appear when we assume a
strictly peaked momentum distribution and consider the second-order corrections
in a power series expansion of the energy. By following a sequence of analytic
approximations, we point out that an extra time-dependent phase is merely the
residue of second-order corrections. Such phase effects are usually ignored in
the relativistic wave-packet treatment, but they do not vanish
non-relativistically and can introduce some small modifications to the
oscillation pattern even in the ultra-relativistic limit.Comment: 9 pages, 3 figure
Flavor and chiral oscillations with Dirac wave packets
We report about recent results on Dirac wave packets in the treatment of
neutrino flavor oscillation where the initial localization of a spinor state
implies an interference between positive and negative energy components of
mass-eigenstate wave packets. A satisfactory description of fermionic particles
requires the use of the Dirac equation as evolution equation for the
mass-eigenstates. In this context, a new flavor conversion formula can be
obtained when the effects of chiral oscillation are taken into account. Our
study leads to the conclusion that the fermionic nature of the particles, where
chiral oscillations and the interference between positive and negative
frequency components of mass-eigenstate wave packets are implicitly assumed,
modifies the standard oscillation probability. Nevertheless, for
ultra-relativistic particles and sharply peaked momentum distributions, we can
analytically demonstrate that these modifications introduce correction factors
proportional to (m12/p0) square which are practically un-detectable by any
experimental analysisComment: 16 pages, 2 figure
An Analytic Approach to the Wave Packet Formalism in Oscillation Phenomena
We introduce an approximation scheme to perform an analytic study of the
oscillation phenomena in a pedagogical and comprehensive way. By using Gaussian
wave packets, we show that the oscillation is bounded by a time-dependent
vanishing function which characterizes the slippage between the mass-eigenstate
wave packets. We also demonstrate that the wave packet spreading represents a
secondary effect which plays a significant role only in the non-relativistic
limit. In our analysis, we note the presence of a new time-dependent phase and
calculate how this additional term modifies the oscillating character of the
flavor conversion formula. Finally, by considering Box and Sine wave packets we
study how the choice of different functions to describe the particle
localization changes the oscillation probability.Comment: 16 pages, 7 figures, AMS-Te
Mass varying dark matter in effective GCG scenarios
A unified treatment of mass varying dark matter coupled to cosmon-{\em like}
dark energy is shown to result in {\em effective} generalized Chaplygin gas
(GCG) scenarios. The mass varying mechanism is treated as a cosmon field
inherent effect. Coupling dark matter with dark energy allows for reproducing
the conditions for the present cosmic acceleration and for recovering the
stability resulted from a positive squared speed of sound c_{s}^{\2}, as in
the GCG scenario. The scalar field mediates the nontrivial coupling between the
dark matter sector and the sector responsible for the accelerated expansion of
the universe. The equation of state of perturbations is the same as that of the
background cosmology so that all the effective results from the GCG paradigm
are maintained. Our results suggest the mass varying mechanism, when obtained
from an exactly soluble field theory, as the right responsible for the
stability issue and for the cosmic acceleration of the universe.Comment: 17 pages, 3 figure
There is a short gamma-ray burst prompt phase at the beginning of each long one
We compare the prompt intrinsic spectral properties of a sample of short
Gamma--ray Burst (GRB) with the first 0.3 seconds (rest frame) of long GRBs
observed by Fermi/GBM. We find that short GRBs and the first part of long GRBs
lie on the same E_p--E_iso correlation, that is parallel to the relation for
the time averaged spectra of long GRBs. Moreover, they are indistinguishable in
the E_p--L_iso plane. This suggests that the emission mechanism is the same for
short and for the beginning of long events, and both short and long GRBs are
very similar phenomena, occurring on different timescales. If the central
engine of a long GRB would stop after ~0.3 * (1+z) seconds the resulting event
would be spectrally indistinguishable from a short GRB.Comment: 14 pages, 6 figures, MNRAS accepte
Optical and X-ray Rest-frame Light Curves of the BAT6 sample
We present the rest-frame light curves in the optical and X-ray bands of an
unbiased and complete sample of Swift long Gamma-Ray Bursts (GRBs), namely the
BAT6 sample. The unbiased BAT6 sample (consisting of 58 events) has the highest
level of completeness in redshift ( 95%), allowing us to compute the
rest-frame X-ray and optical light curves for 55 and 47 objects, respectively.
We compute the X-ray and optical luminosities accounting for any possible
source of absorption (Galactic and intrinsic) that could affect the observed
fluxes in these two bands. We compare the behaviour observed in the X-ray and
in the optical bands to assess the relative contribution of the emission during
the prompt and afterglow phases. We unarguably demonstrate that the GRBs
rest-frame optical luminosity distribution is not bimodal, being rather
clustered around the mean value Log(L) = 29.9 0.8 when estimated at
a rest frame time of 12 hr. This is in contrast with what found in previous
works and confirms that the GRB population has an intrinsic unimodal luminosity
distribution. For more than 70% of the events the rest-frame light curves in
the X-ray and optical bands have a different evolution, indicating distinct
emitting regions and/or mechanisms. The X-ray light curves normalised to the
GRB isotropic energy (E), provide evidence for X-ray emission still
powered by the prompt emission until late times ( hours after the burst
event). On the other hand, the same test performed for the E-normalised optical light curves shows that the optical emission is a
better proxy of the afterglow emission from early to late times.Comment: Accepted for publication in A&A: 10 pages, 5 figures, 2 table
- …
