15 research outputs found
Coordination of Cell Differentiation and Migration in Mathematical Models of Caudal Embryonic Axis Extension
Vertebrate embryos display a predominant head-to-tail body axis whose formation is associated with the progressive development of post-cranial structures from a pool of caudal undifferentiated cells. This involves the maintenance of active FGF signaling in this caudal region as a consequence of the restricted production of the secreted factor FGF8. FGF8 is transcribed specifically in the caudal precursor region and is down-regulated as cells differentiate and the embryo extends caudally. We are interested in understanding the progressive down-regulation of FGF8 and its coordination with the caudal movement of cells which is also known to be FGF-signaling dependent. Our study is performed using mathematical modeling and computer simulations. We use an individual-based hybrid model as well as a caricature continuous model for the simulation of experimental observations (ours and those known from the literature) in order to examine possible mechanisms that drive differentiation and cell movement during the axis elongation. Using these models we have identified a possible gene regulatory network involving self-repression of a caudal morphogen coupled to directional domain movement that may account for progressive down-regulation of FGF8 and conservation of the FGF8 domain of expression. Furthermore, we have shown that chemotaxis driven by molecules, such as FGF8 secreted in the stem zone, could underlie the migration of the caudal precursor zone and, therefore, embryonic axis extension. These mechanisms may also be at play in other developmental processes displaying a similar mode of axis extension coupled to cell differentiation
α5β1 Integrin-Mediated Adhesion to Fibronectin Is Required for Axis Elongation and Somitogenesis in Mice
The arginine-glycine-aspartate (RGD) motif in fibronectin (FN) represents the major binding site for α5β1 and αvβ3 integrins. Mice lacking a functional RGD motif in FN (FNRGE/RGE) or α5 integrin develop identical phenotypes characterized by embryonic lethality and a severely shortened posterior trunk with kinked neural tubes. Here we show that the FNRGE/RGE embryos arrest both segmentation and axis elongation. The arrest is evident at about E9.0, corresponding to a stage when gastrulation ceases and the tail bud-derived presomitic mesoderm (PSM) induces α5 integrin expression and assumes axis elongation. At this stage cells of the posterior part of the PSM in wild type embryos are tightly coordinated, express somitic oscillator and cyclic genes required for segmentation, and form a tapered tail bud that extends caudally. In contrast, the posterior PSM cells in FNRGE/RGE embryos lost their tight associations, formed a blunt tail bud unable to extend the body axis, failed to induce the synchronised expression of Notch1 and cyclic genes and cease the formation of new somites. Mechanistically, the interaction of PSM cells with the RGD motif of FN is required for dynamic formation of lamellipodia allowing motility and cell-cell contact formation, as these processes fail when wild type PSM cells are seeded into a FN matrix derived from FNRGE/RGE fibroblasts. Thus, α5β1-mediated adhesion to FN in the PSM regulates the dynamics of membrane protrusions and cell-to-cell communication essential for elongation and segmentation of the body axis
A Multi-cell, Multi-scale Model of Vertebrate Segmentation and Somite Formation
Somitogenesis, the formation of the body's primary segmental structure common to all vertebrate development, requires coordination between biological mechanisms at several scales. Explaining how these mechanisms interact across scales and how events are coordinated in space and time is necessary for a complete understanding of somitogenesis and its evolutionary flexibility. So far, mechanisms of somitogenesis have been studied independently. To test the consistency, integrability and combined explanatory power of current prevailing hypotheses, we built an integrated clock-and-wavefront model including submodels of the intracellular segmentation clock, intercellular segmentation-clock coupling via Delta/Notch signaling, an FGF8 determination front, delayed differentiation, clock-wavefront readout, and differential-cell-cell-adhesion-driven cell sorting. We identify inconsistencies between existing submodels and gaps in the current understanding of somitogenesis mechanisms, and propose novel submodels and extensions of existing submodels where necessary. For reasonable initial conditions, 2D simulations of our model robustly generate spatially and temporally regular somites, realistic dynamic morphologies and spontaneous emergence of anterior-traveling stripes of Lfng. We show that these traveling stripes are pseudo-waves rather than true propagating waves. Our model is flexible enough to generate interspecies-like variation in somite size in response to changes in the PSM growth rate and segmentation-clock period, and in the number and width of Lfng stripes in response to changes in the PSM growth rate, segmentation-clock period and PSM length
From Dynamic Expression Patterns to Boundary Formation in the Presomitic Mesoderm
The segmentation of the vertebrate body is laid down during early embryogenesis. The formation of signaling gradients, the periodic expression of genes of the Notch-, Fgf- and Wnt-pathways and their interplay in the unsegmented presomitic mesoderm (PSM) precedes the rhythmic budding of nascent somites at its anterior end, which later develops into epithelialized structures, the somites. Although many in silico models describing partial aspects of somitogenesis already exist, simulations of a complete causal chain from gene expression in the growth zone via the interaction of multiple cells to segmentation are rare. Here, we present an enhanced gene regulatory network (GRN) for mice in a simulation program that models the growing PSM by many virtual cells and integrates WNT3A and FGF8 gradient formation, periodic gene expression and Delta/Notch signaling. Assuming Hes7 as core of the somitogenesis clock and LFNG as modulator, we postulate a negative feedback of HES7 on Dll1 leading to an oscillating Dll1 expression as seen in vivo. Furthermore, we are able to simulate the experimentally observed wave of activated NOTCH (NICD) as a result of the interactions in the GRN. We esteem our model as robust for a wide range of parameter values with the Hes7 mRNA and protein decays exerting a strong influence on the core oscillator. Moreover, our model predicts interference between Hes1 and HES7 oscillators when their intrinsic frequencies differ. In conclusion, we have built a comprehensive model of somitogenesis with HES7 as core oscillator that is able to reproduce many experimentally observed data in mice
4D Live Imaging and Analysis of Chick Embryo Somites
Avian (chick) embryos are an established and accessible model organism making them ideal for studying developmental processes. Chick embryos can be harvested from the egg and cultured allowing real-time observations and imaging. Here, we describe ex vivo culture and preparation of somite tissue followed by time-lapse multi-photon microscopy, image capture and processing. We applied this approach to perform live imaging of somites, the paired segments in vertebrate embryos that form in a regular sequence on either side of the neural tube, posteriorly from presomitic mesoderm (psm). Somites give rise to cell lineages of the musculoskeletal system in the trunk such as skeletal muscle, cartilage and tendon, as well as endothelial cells. Until recently it was not possible to observe the cellular dynamics underlying morphological transitions in live tissue, including in somites which undergo epithelial-to-mesenchymal transitions (EMT) during their differentiation. In addition to the experimental setup, we describe the analytical tools used for image processing
In Vivo Analysis of the Mesenchymal-to-Epithelial Transition During Chick Secondary Neurulation
The neural tube in amniotic embryos forms as a result of two consecutive events along the anteroposterior axis, referred to as primary and secondary neurulation (PN and SN). While PN involves the invagination of a sheet of epithelial cells, SN shapes the caudal neural tube through the mesenchymal-to-epithelial transition (MET) of neuromesodermal progenitors, followed by cavitation of the medullary cord. The technical difficulties in studying SN mainly involve the challenge of labeling and manipulating SN cells in vivo. Here we describe a new method to follow MET during SN in the chick embryo, combining early in ovo chick electroporation with in vivo time-lapse imaging. This procedure allows the cells undergoing SN to be manipulated in order to investigate the MET process, permitting their cell dynamics to be followed in vivo
Mechanosensitive Adaptation of E-Cadherin Turnover across adherens Junctions
In the natural and technological world, multi-agent systems strongly depend on how the interactions are ruled between their individual components, and the proper control of timescales and synchronization is a key issue. This certainly applies to living tissues when multicellular assemblies such as epithelial cells achieve complex morphogenetic processes. In epithelia, because cells are known to individually generate actomyosin contractile stress, each individual intercellular adhesive junction line is subjected to the opposed stresses independently generated by its two partner cells. Contact lines should thus move unless their two partner cells mechanically match. The geometric homeostasis of mature epithelia observed at short enough time-scale thus raises the problem to understand how cells, if considered as noisy individual actuators, do adapt across individual intercellular contacts to locally balance their time-average contractile stress. Structural components of adherens junctions, cytoskeleton (F-actin) and homophilic bonds (E-cadherin) are quickly renewed at steady-state. These turnovers, if they depend on forces exerted at contacts, may play a key role in the mechanical adaptation of epithelia. Here we focus on E-cadherin as a force transducer, and we study the local regulation and the mechanosensitivity of its turnover in junctions. We show that E-cadherin turnover rates match remarkably well on either side of mature intercellular contacts, despite the fact that they exhibit large fluctuations in time and variations from one junction to another. Using local mechanical and biochemical perturbations, we find faster turnover rates with increased tension, and asymmetric rates at unbalanced junctions. Together, the observations that E-cadherin turnover, and its local symmetry or asymmetry at each side of the junction, are mechanosensitive, support the hypothesis that E-cadherin turnover could be involved in mechanical homeostasis of epithelia
