3,993 research outputs found
Effects of several types of biomass fuels on the yield, nanostructure and reactivity of soot from fast pyrolysis at high temperatures
peer-reviewedThis study presents the effect of biomass origin on the yield, nanostructure and reactivity of soot. Soot
was produced from wood and herbaceous biomass pyrolysis at high heating rates and at temperatures
of 1250 and 1400° C in a drop tube furnace. The structure of solid residues was characterized by electron
microscopy techniques, X-ray diffraction and N2 adsorption. The reactivity of soot was investigated by
thermogravimetric analysis. Results showed that soot generated at 1400° C was more reactive than soot
generated at 1250° C for all biomass types. Pinewood, beechwood and wheat straw soot demonstrated
differences in alkali content, particle size and nanostructure. Potassium was incorporated in the soot
matrix and significantly influenced soot reactivity. Pinewood soot particles produced at 1250° C had a
broader particle size range (27.2–263 nm) compared to beechwood soot (33.2–102 nm) and wheat straw
soot (11.5–165.3 nm), and contained mainly multi-core structures
EPUAP classification system for pressure ulcers: European reliability study
‘The definitive version is available at www3.interscience.wiley.com .' Copyright Blackwell PublishingPeer reviewe
Theory of commensurable magnetic structures in holmium
The tendency for the period of the helically ordered moments in holmium to
lock into values which are commensurable with the lattice is studied
theoretically as a function of temperature and magnetic field. The
commensurable effects are derived in the mean-field approximation from
numerical calculations of the free energy of various commensurable structures,
and the results are compared with the extensive experimental evidence collected
during the last ten years on the magnetic structures in holmium. In general the
stability of the different commensurable structures is found to be in accord
with the experiments, except for the tau=5/18 structure observed a few degrees
below T_N in a b-axis field. The trigonal coupling recently detected in holmium
is found to be the interaction required to explain the increased stability of
the tau=1/5 structure around 42 K, and of the tau=1/4 structure around 96 K,
when a field is applied along the c-axis.Comment: REVTEX, 31 pages, 7 postscript figure
Dynamical Scaling and Phase Coexistence in Topologically-Constrained DNA Melting
There is a long-standing experimental observation that the melting of
topologically constrained DNA, such as circular-closed plasmids, is less abrupt
than that of linear molecules. This finding points to an intriguing role of
topology in the physics of DNA denaturation, which is however poorly
understood. Here, we shed light on this issue by combining large-scale Brownian
Dynamics simulations with an analytically solvable phenomenological Landau mean
field theory. We find that the competition between melting and supercoiling
leads to phase coexistence of denatured and intact phases at the single
molecule level. This coexistence occurs in a wide temperature range, thereby
accounting for the broadening of the transition. Finally, our simulations show
an intriguing topology-dependent scaling law governing the growth of
denaturation bubbles in supercoiled plasmids, which can be understood within
the proposed mean field theory.Comment: main text + S
TEAM-UP for quality: a cluster randomized controlled trial protocol focused on preventing pressure ulcers through repositioning frequency and precipitating factors
Background: Pressure ulcers/injuries (PrUs), a critical concern for nursing homes (NH), are responsible for chronic wounds, amputations, septic infections, and premature deaths. PrUs occur most commonly in older adults and NH residence is a risk factor for their development, with at least one of every nine U.S. NH residents experiencing a PrU and many NHs having high incidence and prevalence rates, in some instances well over 20%. PrU direct treatment costs are greater than prevention costs, making prevention-focused protocols critical. Current PrU prevention protocols recommend repositioning residents at moderate, high, and severe risk every 2 h. The advent of visco- elastic (VE) high-density foam support-surfaces over the past decade may now make it possible to extend the repositioning interval to every 3 or 4 h without increasing PrU development. The TEAM-UP (Turn Everyone And Move for Ulcer Prevention) study aims to determine: 1) whether repositioning interval can be extended for NH residents without compromising PrU incidence and 2) how changes in medical severity interact with changes in risk level and repositioning schedule to predict PrU development.
Methods: In this proposed cluster randomized study, 9 NHs will be randomly assigned to one of three repositioning intervals (2, 3, or 4 h) for a 4-week period. Each enrolled site will use a single NH-wide repositioning interval as the standard of care for residents at low, moderate, and high risk of PrU development (N = 951) meeting the following criteria: minimum 3-day stay, without PrUs, no adhesive allergy, and using VE support surfaces (mattresses). An FDA-cleared patient monitoring system that records position/movement of these residents via individual wireless sensors will be used to visually cue staff when residents need repositioning and document compliance with repositioning protocols.
Discussion: This study will advance knowledge about repositioning frequency and clinically assessed PrU risk level in relation to PrU incidence and medical severity. Outcomes of this research will contribute to future guidelines for more precise preventive nursing practices and refinement of PrU prevention guidelines.
Trial registration: Clinical Trial Registration: NCT02996331
Genetic Knock-Down of HDAC7 Does Not Ameliorate Disease Pathogenesis in the R6/2 Mouse Model of Huntington's Disease
Huntington's disease (HD) is an inherited, progressive neurological disorder caused by a CAG/polyglutamine repeat expansion, for which there is no effective disease modifying therapy. In recent years, transcriptional dysregulation has emerged as a pathogenic process that appears early in disease progression. Administration of histone deacetylase (HDAC) inhibitors such as suberoylanilide hydroxamic acid (SAHA) have consistently shown therapeutic potential in models of HD, at least partly through increasing the association of acetylated histones with down-regulated genes and by correcting mRNA abnormalities. The HDAC enzyme through which SAHA mediates its beneficial effects in the R6/2 mouse model of HD is not known. Therefore, we have embarked on a series of genetic studies to uncover the HDAC target that is relevant to therapeutic development for HD. HDAC7 is of interest in this context because SAHA has been shown to decrease HDAC7 expression in cell culture systems in addition to inhibiting enzyme activity. After confirming that expression levels of Hdac7 are decreased in the brains of wild type and R6/2 mice after SAHA administration, we performed a genetic cross to determine whether genetic reduction of Hdac7 would alleviate phenotypes in the R6/2 mice. We found no improvement in a number of physiological or behavioral phenotypes. Similarly, the dysregulated expression levels of a number of genes of interest were not improved suggesting that reduction in Hdac7 does not alleviate the R6/2 HD-related transcriptional dysregulation. Therefore, we conclude that the beneficial effects of HDAC inhibitors are not predominantly mediated through the inhibition of HDAC7
Different effects of deep inspirations on central and peripheral airways in healthy and allergen-challenged mice
<p>Abstract</p> <p>Background</p> <p>Deep inspirations (DI) have bronchodilatory and bronchoprotective effects in healthy human subjects, but these effects appear to be absent in asthmatic lungs. We have characterized the effects of DI on lung mechanics during mechanical ventilation in healthy mice and in a murine model of acute and chronic airway inflammation.</p> <p>Methods</p> <p>Balb/c mice were sensitized to ovalbumin (OVA) and exposed to nebulized OVA for 1 week or 12 weeks. Control mice were challenged with PBS. Mice were randomly selected to receive DI, which were given twice during the minute before assessment of lung mechanics.</p> <p>Results</p> <p>DI protected against bronchoconstriction of central airways in healthy mice and in mice with acute airway inflammation, but not when OVA-induced chronic inflammation was present. DI reduced lung resistance induced by methacholine from 3.8 ± 0.3 to 2.8 ± 0.1 cmH<sub>2</sub>O·s·mL<sup>-1 </sup>in healthy mice and 5.1 ± 0.3 to 3.5 ± 0.3 cmH<sub>2</sub>O·s·mL<sup>-1 </sup>in acute airway inflammation (both <it>P </it>< 0.001). In healthy mice, DI reduced the maximum decrease in lung compliance from 15.9 ± 1.5% to 5.6 ± 0.6% (<it>P </it>< 0.0001). This protective effect was even more pronounced in mice with chronic inflammation where DI attenuated maximum decrease in compliance from 44.1 ± 6.6% to 14.3 ± 1.3% (<it>P </it>< 0.001). DI largely prevented increased peripheral tissue damping (G) and tissue elastance (H) in both healthy (G and H both <it>P </it>< 0.0001) and chronic allergen-treated animals (G and H both <it>P </it>< 0.0001).</p> <p>Conclusion</p> <p>We have tested a mouse model of potential value for defining mechanisms and sites of action of DI in healthy and asthmatic human subjects. Our current results point to potent protective effects of DI on peripheral parts of chronically inflamed murine lungs and that the presence of DI may blunt airway hyperreactivity.</p
- …