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There is a long-standing experimental observation that the melting of topologically
constrained DNA, such as circular-closed plasmids, is less abrupt than that of linear
molecules. This finding points to an important role of topology in the physics of DNA
denaturation, which is however poorly understood. Here, we shed light on this issue
by combining large-scale Brownian Dynamics simulations with an analytically solvable
phenomenological Landau mean field theory. We find that the competition between
melting and supercoiling leads to phase coexistence of denatured and intact phases
at the single molecule level. This coexistence occurs in a wide temperature range,
thereby accounting for the broadening of the transition. Finally, our simulations show
an intriguing topology-dependent scaling law governing the growth of denaturation
bubbles in supercoiled plasmids, which can be understood within the proposed mean
field theory.

One of the most fascinating aspects of DNA is that its bi-
ological function is intimately linked to its local topology [1].
For instance, DNA looping [2, 3] and supercoiling [1, 4, 5]
are well-known regulators of gene expression, and a vari-
ety of proteins, such as Polymerases, Gyrases and Topoi-
somerases, can affect genomic function by acting on DNA
topology [1, 2]. Fundamental biological processes such as
DNA transcription and replication are associated with local
opening of the double helix, which can be triggered in vitro
by varying temperature, pH or salt concentration [6]. The
melting transition of DNA from one double-stranded (ds) he-
lix to two single-stranded (ss) coils has been intensively stud-
ied in the past by means of buoyant densities experiments [7],
hyperchromicity spectra [8], AFM measurements [9], single-
molecule experiments [10] and microscopy [11].

Experiments [6, 7] and theories [12, 13] have shown that
the “helix-coil” transition in linear or nicked DNA molecules,
which do not conserve the total linking number between the
two strands, is abrupt and a first-order-like transition. On
the other hand, the same transition is much smoother for
DNA molecules whose linking number is topologically pre-
served, such as circular, covalently-closed ones [7, 14].

Understanding the physical principles underlying DNA
melting in topologically constrained (tc) DNA is important
since this is the relevant scenario in vivo. For instance,
bacterial DNA is circular, while in eukaryotes DNA wraps
around histones [2], and specialised proteins can inhibit the
diffusion of torsional stress [15].

Intriguingly, and in contrast with the behaviour of linear,
or topologically free (tf), DNA, the width of the melting
transition of tcDNA is relatively insensitive to the precise
nucleotide sequence [14] thereby suggesting that a universal
physical mechanism, rather than biochemical details, may
underlie the aforementioned broadening. Existing models of
tcDNA melting typically consider either statistical mechan-
ics theories [16, 17] based on generalisations of the Poland-
Scheraga model [12], computer simulations [18], or contin-
uum theories based on effective free energies [19–21]. Their
goals were to study how the order of the melting transi-
tion changes with supercoiling, and to determine where de-

naturation bubbles initially form in a DNA with sequence
heterogeneity [18, 22, 23]. Notwithstanding these previous
studies, the physical mechanism underlying the broadening
of the transition remains unclear.

Here we shed new light on this issue by employing a
combination of complementary methods. First, we perform
large-scale coarse-grained Brownian Dynamics (BD) simula-
tions of 1000 base-pairs (bp) long topologically free and con-
strained double-stranded DNA molecules undergoing melt-
ing [24]. These large-scale simulations at single bp resolution
predict topology-dependent melting curves in quantitative
agreement with experiments. Second, we propose and study
a phenomenological Landau mean field theory which couples
a critical “denaturation” field (φ) with a non-critical “su-
percoiling” one (σ). This captures the interplay between lo-
cal melting and topological constraints, predicting the emer-
gence of phase coexistence within a wide temperature range,
in line with our simulations. This phenomenon was absent in
previous works [16–22], and it provides a generic mechanism
to explain the experimental broadening of the melting tran-
sition in tcDNA. We finally derive dynamical equations for
the fields φ and σ and discuss the topology-dependent ex-
ponents describing the coarsening of denaturation bubbles
during melting.

Melting Curves and Phase Diagram – We first investi-
gate the melting of DNA via BD simulations employing the
model in [24]. The dsDNA is made up by two single-stranded
chains of “patchy-beads” paired by breakable bonds [25]: for
simplicity, we consider a homopolynucleotide (no sequence
dependence) [14].

The double-helical structure can be opened in vitro ei-
ther by increasing the temperature (T ), or by increasing pH
or salt concentration: both methods effectively reduce the
strength of the H bonds, εHB, between nucleotides. The
simulations reported here emulate the latter route: starting
from an equilibrated dsDNA molecule, we perform a sudden
quench of εHB, and record the time evolution of the system
until steady state (see [25], Fig. S2).

An observable that directly compares with experiments is
the fraction of denatured base-pairs (bp), ϑ. The plot of
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Figure 1. Melting curves. (A) shows the melting curves (frac-
tion of denatured bp, 〈ϑ〉) for nicked and intact polyoma DNA as
a function of T−Tc (data from [7]). (B) shows the melting curves
obtained here via BD simulations of tf and tcDNA molecules,
with length 1000 bp and different levels of supercoiling, as a func-
tion of the (shifted) effective hydrogen-bond strength εHB− εHB,c

(averaged over 5 replicas and 106 BD timesteps). In both experi-
ments (A) and simulations (B), the transition appears smoother
for tcDNA and the relative broadening ∆τ |tc / ∆τ |tf ∼ 3 is in
quantitative agreement. The critical bond energies for which half
of the base-pairs melt are εHB,c/kBT = 1.35 for linear DNA and
0.309, 0.238, 0.168 for σ0 = −0.06, 0 and 0.06, respectively. These
values show that the critical bond energy decreases (linearly) with
supercoiling. (C)-(F) show snapshots of typical configurations for
εHB = 0.3 kBT for tf (linear) and tcDNA with σ0 = 0.06, 0,−0.06,
respectively. Stably denatured bubbles localise at regions of high
curvature (tips of plectonemes [26], highlighted by circles). In
(C) the linear DNA molecule is fully denatured.

the equilibrium value 〈ϑ〉 as a function of temperature or
bond strength can be identified with the melting curve for
DNA. Typical profiles obtained from experiments [7] and BD
simulations performed in this work, are shown in Fig. 1(A-
B): the qualitative agreement is remarkable.

The sharpness of the melting transition can be quantified
via the maximum value attained by the differential melting
curve as ∆τ = |d〈ϑ〉/dτ |−1

, where τ can either be tempera-
ture, T , or effective hydrogen bond strength, εHB. Quanti-
tatively, Figures 1(A)-(B) show that experiments and simu-
lations agree in predicting melting curves for tcDNA about
three times broader than for tfDNA, i.e. ∆τ |tc / ∆τ |tf ' 3.

From these observations, it is clear that DNA melting is af-
fected by global topology. On the other hand, melting occurs
through local opening of the double-helical structure. The
challenge faced by a theory of melting in tcDNA is there-
fore to capture local effects due to the global topological
invariance. Thus, it is useful to define an effective local su-
percoiling field σ(x, t) ≡ (Lk(x, t)− Lk0) /Lk0, where Lk0 is
the linking number between the two strands in the relaxed
B-form state, i.e. 1 every 10.4 bp, and Lk(x, t) is the ef-
fective linking number at position x and time t (see [25] for
more details). For a circular closed molecule of length L

1

L

∫ L

0

σ(x, t)dx = σ0 ∀t , (1)

where σ0 is the initial supercoiling deficit, which can be in-
troduced into the chain by, for instance, the action of topo-
logical enzymes [2]. On the contrary, circular nicked or linear
(tf) dsDNA molecules need not satisfy Eq. (1), since any de-
viation from the torsionally relaxed state can be expelled
through the chain ends or the nick. In light of this, it is
clear that subjecting a tcDNA to denaturation-promoting
factors causes a competition between entropy and torsional
stress: the former associated with the denatured coiled re-
gions [12, 13], the latter arising in the intact helical seg-
ments [17].

In order to qualitatively understand these observations,
we propose the following phenomenological mean field the-
ory for the melting of tf and tcDNA. We consider a denat-
uration field, φ(x, t), describing the state of base-pair x at
time t (e.g., taking the value 0 if intact or > 0 if denatured),
coupled to a conserved field, σ(x, t), tracking the local su-
percoiling. A Landau free energy f can be constructed by
noticing that: (i) the denaturation field φ should undergo a
first-order phase transition when decoupled from σ [12]; (ii)
for φ = 0 the DNA should be torsionally relaxed in equi-
librium, and behave symmetrically for positive and negative
σ [19] [27]; (iii) the coupling between σ and φ should be
such that the system displays an intact dsDNA phase at
sufficiently low T , i.e. φ = 0 for any σ0 at T < Tc.

Based on these considerations we can write an effective
free energy density as:

βf(φ, σ) =

(
b2

4c
+ 1− a

)
φ2+bφ3+cφ4+aσσ

2+bσσ
4+χσφ2 .

(2)
In Eq. (2), a = a(T ) ∼ T/Tc, b < 0 and we keep the quartic
term in σ to ensure there is a local minimum around σ =
−1 (or Lk(x, t) = 0) when φ = φ0, corresponding to the
fully denatured state [25]. The coupling χσφ2 models the
interplay between supercoiling and local melting; the case
χ = 0 corresponds to tfDNA (in this framework the torsional
stress can be expelled infinitely fast). When χ = 0, Eq. (2)
predicts a first-order melting transition.

The free energy density in Eq. (2) displays a minimum at
φ = 0 = φds (helical state), and can develop a competing
one at φ = φss > 1 (coiled state) which in general depends
on σ, χ and a (see [25]). The free energy density of the
two becomes equal at the critical temperature a = ac, which
reduces to ac(σ) = 1 + χσ, by fixing c = −b/2 [25]. This
relation states that more negatively supercoiled molecules
denature at lower temperatures, as in experiments [28].

To obtain the phase diagram of the system in the space
(a, σ0) we focus on dsDNA molecules with fixed, and ini-
tially uniform, value of supercoiling σ0, at fixed a. For
such conditions, the system attains its free-energy minimis-
ing state for a value of φ = φ0(χ, σ0, a) [29]. The uni-
form solution (σ0, φ0) is linearly unstable if it lies within
the spinodal region (in Fig. 2 shaded in grey), i.e. where
∂2f(φ0, σ)/∂σ2 ≤ 0 [30]. In Figure 2 we fix for concrete-
ness b = −4, aσ = 1, bσ = 1/2, χ = 2 (different parameter
choices lead to similar diagrams provided b < 0 [31]).

A system with unstable uniform solution separates into
two phases with low (σ−) and high (σ+) supercoiling lev-
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Figure 2. Phase Diagram. The thick solid line represents the
hidden first order transition line σc(a). The line-shadowed area
highlights the region of absolute instability of the uniform phase;
the spinodal region is coloured in grey. Binodal lines are denoted
as σ− and σ+. Cross-shadowed area highlights the region of co-
existence of two denatured (ss) phases. Filled symbols denote the
values obtained from numerical integration of Eq. (4), with initial
σ0 as indicated by the empty squares. Snapshots of ssDNA, ds-
DNA and ds-ss DNA coexistence observed in BD simulations are
also shown.

els, as this lowers the overall free energy. The values of
σ−(a) and σ+(a) are the coexistence curves, or binodals,
found by imposing that both chemical potential µ(s) ≡
∂f(φ0, σ)/∂σ|s and pressure Π(s) = f(φ0, s) − µ(s)s must
be equal in the two phases [29]. This translates into solv-
ing a system of two equations with two unknowns, i.e.
µ(σ−) = µ(σ+) and Π(σ−) = Π(σ+). By noticing that
σ0 needs to satisfy Eq. (1) for tcDNA, it is straightfor-
ward to find the fractions of the system in the high and
low supercoiling phases as f+ = (σ0 − σ−)/(σ+ − σ−) and
f− = (σ+ − σ0)/(σ+ − σ−), respectively.

The phase diagram in the (a, σ0) space is reported in Fig-
ure 2, where we show that the coexistence lines σ−(a) and
σ+(a) wrap around the first-order transition line σc(a) =
(a − 1)/χ which therefore becomes “hidden” [29]. Thus we
argue that the smoother transition observed for tcDNA [7,
14] is due to the emergence of a coexistence region in the
phase space blurring the underlying first-order transition.
This argument also explains the “early melting” of closed
circular DNA [7], resulting from the entry into the coexis-
tence region from low temperatures.

Intriguingly, our phase diagram includes a region (cross-
shadowed in Fig. 2) where the system displays stable coexis-
tence of two open phases (i.e. φ = φss in both sub-systems)
with supercoiling levels σ̃− and σ̃+. The detailed shape of
this region is sensitive to the details of the Landau param-
eters; we defer a more detailed analysis to future work (see
also [25]).

Dynamical Scaling – The dynamics of the non-conserved
order parameter, φ, and the conserved one, σ, can be found
following the Glauber and Cahn-Hilliard prescriptions, re-
spectively. Consequently, the system can be described by
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Figure 3. Kymographs. (A-B) report results from BD sim-
ulations. At time t = 0, the H bond strength is quenched to
εHB = 0.3kBT and the local state of the chain (red for denatured
and white for intact) is recorded as a “kymograph”. (A) and
(B) show the case of a tf and tcDNA (σ0 = 0), respectively. (C)
shows the kymograph of the system during integration of Eqs. (4)
starting from a small bubble (see [25]). Insets show instantaneous
profiles of denaturation field (red) and supercoiling field (blue).

the following “model C” equations [30]

∂φ(x, t)

∂t
= −Γφ

δH(φ, σ)

δφ
,
∂σ(x, t)

∂t
= Γσ∇2 δH(φ, σ)

δσ
(3)

with H(φ, σ) =
∫ (

f(φ, σ) + γφ (∇φ)
2

+ γσ (∇σ)
2
)
dx

and Γσ,φ the relaxation constants, and γφ,σ determining
the effective surface tension of bubbles and supercoiling do-
mains, respectively. From Eqs. (2) and (3) we get

∂φ

∂t
= −Γφ

[
2

(
b2

2c
+ 1− a

)
φ+ 3bφ2 + 4cφ3 + 2χφσ − γφ∇2φ

]
∂σ

∂t
= Γσ∇2

[
2aσσ + 4bσσ

3 + χφ2 − γσ∇2σ
]
. (4)

We numerically solve this set of partial differential equations
(PDE) on a 1D lattice of size L for fixed a and σ0 (see [25])
and compare the evolution of denaturation bubbles with that
observed in BD simulations. These equations disregard ther-
mal noise, hence constitute a mean field theory.

In Figure 3 we show “kymographs” from BD simulations,
capturing the state of each base-pair (intact or denatured)
against time for tf and tcDNA. After the energy quench at
t = 0, the linear (tfDNA) molecule starts to denature from
the ends and eventually fully melts. On the other hand,
in the closed circular (tcDNA) molecule, bubbles pop up
randomly over the whole length, and the steady state entails
a stable fraction, 0 < ϑ < 1, of denatured bp (Fig. S2).

We observe similar behaviour when φ and σ are evolved
via Eqs. (4), starting from a single small bubble at temper-
ature a within the coexistence region (Fig. 3D and [25]).
While the bubble grows, the supercoiling field is forced out-
side the denatured regions and accumulates in the intact
segments. The increasing positive supercoiling in the he-
lical domains slows down and finally arrests denaturation,



4

resulting in phase coexistence in steady state, between a de-
natured phase with σ = σ− and φ = φss > 1, and an intact
phase with σ = σ+ and φ = φds = 0.

The growth, or coarsening, of a denaturation bubble, l,
can be quantified within our mean field theory and BD sim-
ulations. As shown in Fig. 4(A-C) we find that in both
cases,

l(t) ∼

{
t1 for topologically free DNA,

t1/2 for topologically constrained DNA.
(5)

In other words, the exponent α governing the local growth
of a denaturation bubble depends on the global topology of
the molecule.

We propose the following argument to explain the values
of α. For tfDNA (e.g., nicked or linear), we can assume
that the supercoiling gets quickly expelled from the chain,
without affecting the dynamics of φ. In this case, the free
energy can be approximated as f ' (εHB − T∆S)l, so there
is a constant increase in entropy per each denatured bp when
T > Tc = εHB/∆S. This implies that [30] ψdl/dt ' df/dl ∼
const, with ψ an effective constant friction; as a result l(t) ∼
t.

On the other hand, the value of α = 1/2 observed for
tcDNA (e.g., circular non-nicked plasmids) can be under-
stood by quantifying the slowing down of denaturation due
to the accumulation of a “wave” of supercoiling, raked up on
either side of the growing bubble [25]. As the linking num-
ber is globally conserved, the amount of supercoiling which
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Figure 4. Dynamical Scaling. (A-B) show results from BD
simulations. The size of the largest denatured bubble 〈l〉 (aver-
aged over 5 replicas) is plotted against time from the moment of
the quench. (A) shows tcDNA while (B) refers to tfDNA. (C)
shows the size of a single growing bubble, l, within our mean
field model, Eqs. (4). PDE and BD simulations show similar
behaviours, which suggest a universal dynamical scaling with
topology-dependent exponent (α = 1 for χ = 0 and α = 1/2
for χ > 0). (D) shows the linking number, Lkd, stored inside a
denatured bubble of fixed size l computed from BD simulations
(see text and [25] for details).

is expelled from the bubble after time t, i.e. ∼ |σ− − σ0| l(t),
must equal that injected into the intact dsDNA immedi-
ately outside the bubble. The corresponding “wave” of pos-
itive supercoiling can be approximated by a triangle with
constant height h = σ+ − σ0 and growing base b ∼ l(t)
(see [25], Fig. S10 and Fig. 3(C)) [32]. We can further
equate the local flux of supercoiling leaving the bubble at
time t, ∼ |σ− − σ0| dl/dt, to the local flux entering the tri-
angular wave, Jσ = −Γσ∂xσ ' Γσh/l. Hence, dl/dt ∼ 1/l,
or l ∼ t1/2.

Linking within Denaturation Bubbles – As a final result,
we perform BD simulations to characterise the topology of a
denaturation bubble through the linking number that can be
stored inside it (Fig. 4(D)). An idealised bubble is identified
by Lk = 0 (and σ = −1) [17], whereas our BD simulations
show that a denatured region of fixed size l (imposed by
selectively breaking only l consecutive bonds along an intact
dsDNA molecule) has a non-zero linking number Lkd (see
Fig. 4(D)) [33].

We found that for small l, Lkd displays a remarkable sig-
nature of global topology (through the value of σ0); instead,
at large l, Lkd scales as Lkd ∼ l1.25 irrespectively of σ0,
until it reaches Lk0. The finding that a denaturation bub-
ble displays a non-trivial and l-dependent linking number
suggests that idealised (Lkd = 0) bubbles may not always
be reflecting realistic behaviour. Further, it may be of rele-
vance for processes such as DNA replication, as it suggests
that supercoiling or torsional stress may be able to diffuse
past replication forks [34].

Conclusions – In summary, we studied the melting be-
haviour of topologically constrained DNA through a combi-
nation of large-scale BD simulations and mean field theory.
A key result is that the phase diagram for tcDNA melting
generally involves phase coexistence between a denatured
and an intact phase, pre-empting a first-order denaturation
transition as in tfDNA. This finding provides a theoretical
framework to explain the long-standing experimental obser-
vation that the denaturation transition in circular, and not
nicked, supercoiled plasmids is seemingly less cooperative
(smoother) than for linear, or nicked, DNA [7, 14].

We further studied the coarsening dynamics of denatura-
tion bubbles in tcDNA, and found a remarkable agreement
between BD simulations and mean field theory, both repro-
ducing similar topology-dependent scaling exponents that
can be understood within our theoretical model. In the fu-
ture, it would be of interest to investigate such dynamics
experimentally as well as to include sequence heterogeneity
in our theory.

DMa and DMi acknowledge ERC for funding (Consolida-
tor Grant THREEDCELLPHYSICS, Ref. 648050). YAGF
acknowledges support form CONACyT PhD grant 384582.
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