23 research outputs found

    Energy Loss of a High Charge Bunched Electron Beam in Plasma

    Full text link
    There has been much interest in the blowout regime of plasma wakefield acceleration (PWFA), which features ultra-high fields and nonlinear plasma motion. Using an exact analysis, we examine here a fundamental limit of nonlinear PWFA excitation, by an infinitesimally short, relativistic electron beam. The beam energy loss in this case is shown to be linear in charge even for nonlinear plasma response, where a normalized, unitless charge exceeds unity. The physical basis for this effect is discussed, as are deviations from linear behavior observed in simulations with finite length beams.Comment: Submitted to Physical Review Letter

    Living on the Edge: Assessing the Extinction Risk of Critically Endangered Bonelli’s Eagle in Italy

    Get PDF
    Background: The population of Bonelli’s eagle (Aquila fasciata) has declined drastically throughout its European range due to habitat degradation and unnatural elevated mortality. There are less than 1500 breeding pairs accounted for in Europe, and the species is currently catalogued as Critically Endangered in Italy, where the 22 territories of Sicily, represent nearly 95% of the entire Italian population. However, despite national and European conservation concerns, the species currently lacks a specific conservation plan, and no previous attempts to estimate the risk of extinction have been made. Methodology/Principal Findings: We incorporated the most updated demographic information available to assess the extinction risk of endangered Bonelli’s eagle in Italy through a Population Viability Analysis. Using perturbation analyses (sensitivity and elasticity), and a combination of demographic data obtained from an assortment of independent methods, we evaluated which demographic parameters have more influence on the population’s fate. We also simulated different scenarios to explore the effects of possible management actions. Our results showed that under the current conditions, Bonelli’s eagle is expected to become extinct in Italy in less than 50 years. Stand-alone juvenile mortality was the most critical demographic parameter with the strongest influence on population persistence with respect to other demographic parameters. Measures aimed at either decreasing juvenile mortality, adult mortality or decreasing both juvenile and adult mortality resulted in equivalent net positive effects on population persistence (population growth rate l.1). In contrast, changes aimed at increasing breeding success had limited positive effects on demographic trends. Conclusions/Significance: Our PVA provides essential information to direct the decision-making process and exposes gaps in our previous knowledge. To ensure the long-term persistence of the species in Italy, measures are urgently needed to decrease both adult mortality due to poaching and juvenile mortality due to nest plundering, the top ranking mortality causes.PLL is supported by a “Juan de la Cierva” postdoctoral grant of the Spanish Ministry of Economy and Competitiveness (reference JCI-2011–09588)

    Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    No full text
    The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed

    Observation of plasma wakefield acceleration in the underdense regime

    No full text
    Initial experiments which have explored the physics of the underdense (blowout) regime of the plasma wakefield accelerator (PWFA) at the Argonne Wakefield Accelerator facility are reported. In this regime, the relativistic electron beam is denser than the plasma, causing the beam channel to completely rarefy, and leaving a high quality accelerating region which also contains a uniform ion column. This ion column in turn allows the drive and accelerating beams to be well guided over many initial beam beta-function lengths. The results of these experiments, which have taken place over several years, are reviewed. Notable achievements in the course of these studies include the creation and measurement of drive and witness beam generated in an rf photoinjector, as well as previously published studies on drive beam guiding in the underdense regime. In addition, these experiments allowed measurement of both beam energy loss and gain, at a maximum average rate of 25 MeV/m in this regime of the PWFA, which is consistent with a peak acceleration gradient of 62 MeV/m in the excited waves. Difficulties associated with this type of experiment are discussed, as are prospects for mitigating these difficulties and achieving high gradient acceleration in planned future experiments
    corecore