78 research outputs found

    Leukotriene inhibition in hamster periodontitis. A histochemical and morphometric study

    Get PDF
    The effects of leukotriene (LT) inhibition on gingival and adjacent bone compartments were assessed by using phenidone (100 mg/kg/d) and ketoconazole (50 mg/kg/d) given for 4 weeks to periodontitis-affected hamsters. In the gingiva the two agents significantly decreased PMNL recruitment and migration and increased the vascular lumen. At the bone level, they reduced significantly preosteoclast and osteoclast numbers but did not affect osteoclast activity. Phenidone had no action on periodontitis induced inhibition of bone formation; in contrast ketoconazole enhanced formation. As both phenidone and ketoconazole are unspecific LT inhibitors it cannot be ascertained that the effects observed were actually due to LT inhibition. However, phenidone and ketoconazole induced changes different from indomethacin used in previous studies to inhibit the cyclooxygenase pathway. These discrepancies suggest that LT inhibition occurred in the present study and that they participate in gingival inflammation and osteoclastic destruction during hamster periodontitis

    Bayesian Optimization with Dimension Scheduling: Application to Biological Systems

    No full text
    Bayesian Optimization (BO) is a data-efficient method for global black-box optimization of an expensive-to-evaluate fitness function. BO typically assumes that computation cost of BO is cheap, but experiments are time consuming or costly. In practice, this allows us to optimize ten or fewer critical parameters in up to 1,000 experiments. But experiments may be less expensive than BO methods assume: In some simulation models, we may be able to conduct multiple thousands of experiments in a few hours, and the computational burden of BO is no longer negligible compared to experimentation time. To address this challenge we introduce a new Dimension Scheduling Algorithm (DSA), which reduces the computational burden of BO for many experiments. The key idea is that DSA optimizes the fitness function only along a small set of dimensions at each iteration. This DSA strategy (1) reduces the necessary computation time, (2) finds good solutions faster than the traditional BO method, and (3) can be parallelized straightforwardly. We evaluate the DSA in the context of optimizing parameters of dynamic models of microalgae metabolism and show faster convergence than traditional BO

    dynamic Flux Balance Analysis of the Metabolism of Microalgae under a Diurnal Light Cycle

    Get PDF
    Microalgae have received much attention in the context of renewable fuel production, due to their ability to produce in high quantities carbon storage molecules such as lipids and carbohydrates. Despite significant research effort over the last decade, the production yields remain low and need to be optimized. For that, a thorough understanding of carbon storage metabolism is necessary. This paper develops a constrained metabolic model based on the dFBA framework to represent the dynamics of carbon storage in microalgae under a diurnal light cycle. The main assumption here is that microalgae adapt their metabolism in order to optimize their production of functional biomass (proteins, membrane lipids, DNA, RNA) over a diurnal cycle. A generic metabolic network comprised of 160 reactions representing the main carbon and nitrogen pathways of microalgae is used to characterize the metabolism. The optimization problem is simplified by exploiting the right kernel of the stoichiometric matrix, and transformed into a linear program by discretizing the differential equations using a classical collocation technique. Several constraints are investigated. The results suggest that the experimentally observed strategy of accumulation of carbon storage molecules during the day, followed by their depletion during the night may indeed be the optimal one. However, a constraint on the maximal synthesis rate of functional biomass must be added for consistency with the biological observations

    Defective CFTR Expression and Function Are Detectable in Blood Monocytes: Development of a New Blood Test for Cystic Fibrosis

    Get PDF
    BACKGROUND: Evaluation of cystic fibrosis transmembrane conductance regulator (CFTR) functional activity to assess new therapies and define diagnosis of cystic fibrosis (CF) is cumbersome. It is known that leukocytes express detectable levels of CFTR but the molecule has not been characterized in these cells. In this study we aim at setting up and validating a blood test to evaluate CFTR expression and function in leukocytes. DESCRIPTION: Western blot, PCR, immunofluorescence and cell membrane depolarization analysis by single-cell fluorescence imaging, using the potential-sensitive DiSBAC(2)(3) probe were utilized. Expression of PKA phosphorylated, cell membrane-localized CFTR was detected in non-CF monocytes, being undetectable or present in truncated form in monocytes derived from CF patients presenting with nonsense mutations. CFTR agonist administration induced membrane depolarization in monocytes isolated from non-CF donors (31 subjects) and, to a lesser extent, obligate CFTR heterozygous carriers (HTZ: 15 subjects), but it failed in monocytes from CF patients (44 subjects). We propose an index, which values in CF patients are significantly (p<0.001) lower than in the other two groups. Nasal Potential Difference, measured in selected subjects had concordant results with monocytes assay (Kappa statistic 0.93, 95%CI: 0.80-1.00). RESULTS AND SIGNIFICANCE: CFTR is detectable and is functional in human monocytes. We also showed that CFTR-associated activity can be evaluated in 5 ml of peripheral blood and devise an index potentially applicable for diagnostic purposes and both basic and translational research: from drug development to evaluation of functional outcomes in clinical trials

    High Glucose Suppresses Human Islet Insulin Biosynthesis by Inducing miR-133a Leading to Decreased Polypyrimidine Tract Binding Protein-Expression

    Get PDF
    BACKGROUND: Prolonged periods of high glucose exposure results in human islet dysfunction in vitro. The underlying mechanisms behind this effect of high glucose are, however, unknown. The polypyrimidine tract binding protein (PTB) is required for stabilization of insulin mRNA and the PTB mRNA 3'-UTR contains binding sites for the microRNA molecules miR-133a, miR-124a and miR-146. The aim of this study was therefore to investigate whether high glucose increased the levels of these three miRNAs in association with lower PTB levels and lower insulin biosynthesis rates. METHODOLOGY/PRINCIPAL FINDINGS: Human islets were cultured for 24 hours in the presence of low (5.6 mM) or high glucose (20 mM). Islets were also exposed to sodium palmitate or the proinflammatory cytokines IL-1beta and IFN-gamma, since saturated free fatty acids and cytokines also cause islet dysfunction. RNA was then isolated for real-time RT-PCR analysis of miR-133a, miR-124a, miR-146, insulin mRNA and PTB mRNA contents. Insulin biosynthesis rates were determined by radioactive labeling and immunoprecipitation. Synthetic miR-133a precursor and inhibitor were delivered to dispersed islet cells by lipofection, and PTB was analyzed by immunoblotting following culture at low or high glucose. Culture in high glucose resulted in increased islet contents of miR-133a and reduced contents of miR-146. Cytokines increased the contents of miR-146. The insulin and PTB mRNA contents were unaffected by high glucose. However, both PTB protein levels and insulin biosynthesis rates were decreased in response to high glucose. The miR-133a inhibitor prevented the high glucose-induced decrease in PTB and insulin biosynthesis, and the miR-133a precursor decreased PTB levels and insulin biosynthesis similarly to high glucose. CONCLUSION: Prolonged high-glucose exposure down-regulates PTB levels and insulin biosynthesis rates in human islets by increasing miR-133a levels. We propose that this mechanism contributes to hyperglycemia-induced beta-cell dysfunction

    Preliminary Evidence for Cell Membrane Amelioration in Children with Cystic Fibrosis by 5-MTHF and Vitamin B12 Supplementation: A Single Arm Trial

    Get PDF
    Cystic fibrosis (CF) is one of the most common fatal autosomal recessive disorders in the Caucasian population caused by mutations of gene for the cystic fibrosis transmembrane conductance regulator (CFTR). New experimental therapeutic strategies for CF propose a diet supplementation to affect the plasma membrane fluidity and to modulate amplified inflammatory response. The objective of this study was to evaluate the efficacy of 5-methyltetrahydrofolate (5-MTHF) and vitamin B12 supplementation for ameliorating cell plasma membrane features in pediatric patients with cystic fibrosis.A single arm trial was conducted from April 2004 to March 2006 in an Italian CF care centre. 31 children with CF aged from 3 to 8 years old were enrolled. Exclusion criteria were diabetes, chronic infections of the airways and regular antibiotics intake. Children with CF were supplemented for 24 weeks with 5-methyltetrahydrofolate (5-MTHF, 7.5 mg /day) and vitamin B12 (0.5 mg/day). Red blood cells (RBCs) were used to investigate plasma membrane, since RBCs share lipid, protein composition and organization with other cell types. We evaluated RBCs membrane lipid composition, membrane protein oxidative damage, cation content, cation transport pathways, plasma and RBCs folate levels and plasma homocysteine levels at baseline and after 24 weeks of 5-MTHF and vitamin B12 supplementation. In CF children, 5-MTHF and vitamin B12 supplementation (i) increased plasma and RBC folate levels; (ii) decreased plasma homocysteine levels; (iii) modified RBC membrane phospholipid fatty acid composition; (iv) increased RBC K(+) content; (v) reduced RBC membrane oxidative damage and HSP70 membrane association.5-MTHF and vitamin B12 supplementation might ameliorate RBC membrane features of children with CF.ClinicalTrials.gov NCT00730509
    • …
    corecore