7,781 research outputs found

    Josephson effects in dilute Bose-Einstein condensates

    Get PDF
    We propose an experiment that would demonstrate the ``dc'' and ``ac'' Josephson effects in two weakly linked Bose-Einstein condensates. We consider a time-dependent barrier, moving adiabatically across the trapping potential. The phase dynamics are governed by a ``driven-pendulum'' equation, as in current-driven superconducting Josephson junctions. At a critical velocity of the barrier (proportional to the critical tunneling current), there is a sharp transition between the ``dc'' and ``ac'' regimes. The signature is a sudden jump of a large fraction of the relative condensate population. Analytical predictions are compared with a full numerical solution of the time dependent Gross-Pitaevskii equation, in an experimentally realistic situation.Comment: 4 pages, 1 figur

    Quantum dynamics of local phase differences between reservoirs of driven interacting bosons separated by simple aperture arrays

    Full text link
    We present a derivation of the effective action for the relative phase of driven, aperture-coupled reservoirs of weakly-interacting condensed bosons from a (3+1)-D microscopic model with local U(1) gauge symmetry. We show that inclusion of local chemical potential and driving velocity fields as a gauge field allows derivation of the hydrodynamic equations of motion for the driven macroscopic phase differences across simple aperture arrays. For a single aperture, the current-phase equation for driven flow contains sinusoidal, linear, and current-bias contributions. We compute the renormalization group (RG) beta function of the periodic potential in the effective action for small tunneling amplitudes and use this to analyze the temperature dependence of the low-energy current-phase relation, with application to the transition from linear to sinusoidal current-phase behavior observed in experiments by Hoskinson et al. \cite{packard} for liquid 4^{4}He driven through nanoaperture arrays. Extension of the microscopic theory to a two-aperture array shows that interference between the microscopic tunneling contributions for individual apertures leads to an effective coupling between apertures which amplifies the Josephson oscillations in the array. The resulting multi-aperture current-phase equations are found to be equivalent to a set of equations for coupled pendula, with microscopically derived couplings.Comment: 16 pages, 5 figures v2: typos corrected, RG phase diagram correcte

    Observation of metastable states in spinor Bose-Einstein condensates

    Full text link
    Bose-Einstein condensates have been prepared in long-lived metastable excited states. Two complementary types of metastable states were observed. The first is due to the immiscibility of multiple components in the condensate, and the second to local suppression of spin-relaxation collisions. Relaxation via re-condensation of non-condensed atoms, spin relaxation, and quantum tunneling was observed. These experiments were done with F=1 spinor Bose-Einstein condensates of sodium confined in an optical dipole trap.Comment: 3 figures included in paper, fourth figure separat

    Observatory's linguistic landscape: semiotic appropriation and the reinvention of space

    Get PDF
    Using a longitudinal ethnographic study of the linguistic landscape (LL) in Observatory's business corridor of Lower Main Road, the paper explores changes brought about by the influx of immigrant Africans, their artefacts and language practices. The paper uses the changes in the LL over time and the development of an "African Corner" within Lower Main Road, to illustrate the appropriation of space and the unpredictability, which comes along with highly mobile, technological and multicultural citizens. It is argued that changes in the LL are part of the act of claiming and appropriating space wherein space becomes summarily recontexualized and hence reinvented and "owned" by new actors. It is also argued that space ownership can be concealed through what we have called "brand anonymity" strategies in which the identity of the owner is deliberately concealed behind global brands. We conclude that space is pliable and mobile, and that, it is the people within space who carve out new social practices in their appropriated space.IBS

    Integer quantum Hall effect of interacting electrons: dynamical scaling and critical conductivity

    Full text link
    We report on a study of interaction effects on the polarization of a disordered two-dimensional electron system in a strong magnetic field. Treating the Coulomb interaction within the time-dependent Hartree-Fock approximation we find numerical evidence for dynamical scaling with a dynamical critical exponent z=1 at the integer quantum Hall plateau transition in the lowest Landau level. Within the numerical accuracy of our data the conductivity at the transition and the anomalous diffusion exponent are given by the values for non-interacting electrons, independent of the strength of the interaction.Comment: Minor changes. Final version to be published in Phys. Rev. Lett. June 2

    Josephson Effect between Condensates with Different Internal Structures

    Full text link
    A general formula for Josephson current in a wide class of hybrid junctions between different internal structures is derived on the basis of the Andreev picture. The formula extends existing formulae and also enables us to analyze novel B-phase/A-phase/B-phase (BAB) junctions in superfluid helium three systems, which are accessible to experiments. It is predicted that BAB junctions will exhibit two types of current-phase relations associated with different internal symmetries. A ``pseudo-magnetic interface effect'' inherent in the system is also revealed.Comment: 4 pages, 2 figure

    Pinhole calculations of the Josephson effect in 3He-B

    Full text link
    We study theoretically the dc Josephson effect between two volumes of superfluid 3He-B. We first discuss how the calculation of the current-phase relationships is divided into a mesoscopic and a macroscopic problem. We then analyze mass and spin currents and the symmetry of weak links. In quantitative calculations the weak link is assumed to be a pinhole, whose size is small in comparison to the coherence length. We derive a quasiclassical expression for the coupling energy of a pinhole, allowing also for scattering in the hole. Using a selfconsistent order parameter near a wall, we calculate the current-phase relationships in several cases. In the isotextural case, the current-phase relations are plotted assuming a constant spin-orbit texture. In the opposite anisotextural case the texture changes as a function of the phase difference. For that we have to consider the stiffness of the macroscopic texture, and we also calculate some surface interaction parameters. We analyze the experiments by Marchenkov et al. We find that the observed pi states and bistability hardly can be explained with the isotextural pinhole model, but a good quantitative agreement is achieved with the anisotextural model.Comment: 20 pages, 21 figures, revtex

    HV/HR-CMOS sensors for the ATLAS upgrade—concepts and test chip results

    Get PDF
    In order to extend its discovery potential, the Large Hadron Collider (LHC) will have a major upgrade (Phase II Upgrade) scheduled for 2022. The LHC after the upgrade, called High-Luminosity LHC (HL-LHC), will operate at a nominal leveled instantaneous luminosity of 5× 1034 cm−2 s−1, more than twice the expected Phase I . The new Inner Tracker needs to cope with this extremely high luminosity. Therefore it requires higher granularity, reduced material budget and increased radiation hardness of all components. A new pixel detector based on High Voltage CMOS (HVCMOS) technology targeting the upgraded ATLAS pixel detector is under study. The main advantages of the HVCMOS technology are its potential for low material budget, use of possible cheaper interconnection technologies, reduced pixel size and lower cost with respect to traditional hybrid pixel detector. Several first prototypes were produced and characterized within ATLAS upgrade R&D effort, to explore the performance and radiation hardness of this technology. In this paper, an overview of the HVCMOS sensor concepts is given. Laboratory tests and irradiation tests of two technologies, HVCMOS AMS and HVCMOS GF, are also given
    corecore