889 research outputs found
Absence of superconductivity in iron polyhydrides at high pressures
Recently, C. M. Pépin et al. [Science 357, 382 (2017)] reported the formation of several new iron polyhydrides FeHx at pressures in the megabar range and spotted FeH5, which forms above 130 GPa, as a potential high-Tc superconductor because of an alleged layer of dense metallic hydrogen. Shortly after, two studies by A. Majumdar et al. [Phys. Rev. B 96, 201107 (2017)] and A. G. Kvashnin et al. [J. Phys. Chem. C 122, 4731 (2018)] based on ab initio Migdal-Eliashberg theory seemed to independently confirm such a conjecture. We conversely find, on the same theoretical-numerical basis, that neither FeH5 nor its precursor, FeH3, shows any conventional superconductivity and explain why this is the case. We also show that superconductivity may be attained by transition-metal polyhydrides in the FeH3 structure type by adding more electrons to partially fill one of the Fe-H hybrid bands (as, e.g., in NiH3). Critical temperatures, however, will remain low because the
d-metal bonding, and not the metallic hydrogen, dominates the behavior of electrons and phonons involved in the superconducting pairing in these compounds
Electron-phonon interaction in Graphite Intercalation Compounds
Motivated by the recent discovery of superconductivity in Ca- and
Yb-intercalated graphite (CaC and YbC) and from the ongoing debate
on the nature and role of the interlayer state in this class of compounds, in
this work we critically study the electron-phonon properties of a simple model
based on primitive graphite. We show that this model captures an essential
feature of the electron-phonon properties of the Graphite Intercalation
Compounds (GICs), namely, the existence of a strong dormant electron-phonon
interaction between interlayer and electrons, for which we
provide a simple geometrical explanation in terms of NMTO Wannier-like
functions. Our findings correct the oversimplified view that
nearly-free-electron states cannot interact with the surrounding lattice, and
explain the empirical correlation between the filling of the interlayer band
and the occurrence of superconductivity in Graphite-Intercalation Compounds.Comment: 13 pages, 12 figures, submitted to Phys. Rev.
Pair-distribution functions of the two-dimensional electron gas
Based on its known exact properties and a new set of extensive fixed-node
reptation quantum Monte Carlo simulations (both with and without backflow
correlations, which in this case turn out to yield negligible improvements), we
propose a new analytical representation of (i) the spin-summed
pair-distribution function and (ii) the spin-resolved potential energy of the
ideal two-dimensional interacting electron gas for a wide range of electron
densities and spin polarization, plus (iii) the spin-resolved pair-distribution
function of the unpolarized gas. These formulae provide an accurate reference
for quantities previously not available in analytic form, and may be relevant
to semiconductor heterostructures, metal-insulator transitions and quantum dots
both directly, in terms of phase diagram and spin susceptibility, and
indirectly, as key ingredients for the construction of new two-dimensional spin
density functionals, beyond the local approximation.Comment: 12 pages, 10 figures; misprints correcte
Chemical Hardness, Linear Response, and Pseudopotential Transferability
We propose a systematic method of analyzing pseudopotential transferability
based on linear-response properties of the free atom, including self-consistent
chemical hardness and polarizability. Our calculation of hardness extends the
approach of Teter\cite{teter} not only by including self-consistency, but also
by generalizing to non-diagonal hardness matrices, thereby allowing us to test
for transferability to non-spherically symmetric environments. We apply the
method to study the transferability of norm-conserving pseudopotentials for a
variety of elements in the Periodic Table. We find that the self-consistent
corrections are frequently significant, and should not be neglected. We prove
that the partial-core correction improves the pseudopotential hardness of
alkali metals considerably. We propose a quantity to represent the average
hardness error and calculate this quantity for many representative elements as
a function of pseudopotential cutoff radii. We find that the atomic
polarizabilities are usually well reproduced by the norm-conserving
pseudopotentials. Our results provide useful guidelines for making optimal
choices in the pseudopotential generation procedure.Comment: Revtex (preprint style, 33 pages) + 9 postscript figures A version in
two-column article style with embedded figures is available at
http://electron.rutgers.edu/~dhv/preprints/index.html#l
Electrons and phonons in the ternary alloy CaAlSi} as a function of composition
We report a detailed first-principles study of the structural, electronic and
vibrational properties of the superconducting C phase of the ternary
alloy CaAlSi, both in the experimental range ,
for which the alloy has been synthesised, and in the theoretical limits of high
aluminium and high silicon concentration. Our results indicate that, in the
experimental range, the dependence of the electronic bands on composition is
well described by a rigid-band model, which breaks down outside this range.
Such a breakdown, in the (theoretical) limit of high aluminium concentration,
is connected to the appearance of vibrational instabilities, and results in
important differences between CaAl and MgB. Unlike MgB, the
interlayer band and the out-of-plane phonons play a major role on the stability
and superconductivity of CaAlSi and related C intermetallic compounds
Local-spin-density functional for multideterminant density functional theory
Based on exact limits and quantum Monte Carlo simulations, we obtain, at any
density and spin polarization, an accurate estimate for the energy of a
modified homogeneous electron gas where electrons repel each other only with a
long-range coulombic tail. This allows us to construct an analytic
local-spin-density exchange-correlation functional appropriate to new,
multideterminantal versions of the density functional theory, where quantum
chemistry and approximate exchange-correlation functionals are combined to
optimally describe both long- and short-range electron correlations.Comment: revised version, ti appear in PR
A local density functional for the short-range part of the electron-electron interaction
Motivated by recent suggestions --to split the electron-electron interaction
into a short-range part, to be treated within the density functional theory,
and a long-range part, to be handled by other techniques-- we compute, with a
diffusion Monte Carlo method, the ground-state energy of a uniform electron gas
with a modified, short-range-only electron-electron interaction \erfc(\mu
r)/r, for different values of the cutoff parameter and of the electron
density. After deriving some exact limits, we propose an analytic
representation of the correlation energy which accurately fits our Monte Carlo
data and also includes, by construction, these exact limits, thus providing a
reliable ``short-range local-density functional''.Comment: 7 pages, 3 figure
Tailoring strain in SrTiO3 compound by low energy He+ irradiation
The ability to generate a change of the lattice parameter in a near-surface
layer of a controllable thickness by ion implantation of strontium titanate is
reported here using low energy He+ ions. The induced strain follows a
distribution within a typical near-surface layer of 200 nm as obtained from
structural analysis. Due to clamping effect from the underlying layer, only
perpendicular expansion is observed. Maximum distortions up to 5-7% are
obtained with no evidence of amorphisation at fluences of 1E16 He+ ions/cm2 and
ion energies in the range 10-30 keV.Comment: 11 pages, 4 figures, Accepted for publication in Europhysics Letter
(http://iopscience.iop.org/0295-5075
Variational finite-difference representation of the kinetic energy operator
A potential disadvantage of real-space-grid electronic structure methods is
the lack of a variational principle and the concomitant increase of total
energy with grid refinement. We show that the origin of this feature is the
systematic underestimation of the kinetic energy by the finite difference
representation of the Laplacian operator. We present an alternative
representation that provides a rigorous upper bound estimate of the true
kinetic energy and we illustrate its properties with a harmonic oscillator
potential. For a more realistic application, we study the convergence of the
total energy of bulk silicon using a real-space-grid density-functional code
and employing both the conventional and the alternative representations of the
kinetic energy operator.Comment: 3 pages, 3 figures, 1 table. To appear in Phys. Rev. B. Contribution
for the 10th anniversary of the eprint serve
- …
