13,799 research outputs found

    Excitonic and Quasiparticle Life Time Effects on Silicon Electron Energy Loss Spectrum from First Principles

    Full text link
    The quasiparticle decays due to electron-electron interaction in silicon are studied by means of first-principles all-electron GW approximation. The spectral function as well as the dominant relaxation mechanisms giving rise to the finite life time of quasiparticles are analyzed. It is then shown that these life times and quasiparticle energies can be used to compute the complex dielectric function including many-body effects without resorting to empirical broadening to mimic the decay of excited states. This method is applied for the computation of the electron energy loss spectrum of silicon. The location and line shape of the plasmon peak are discussed in detail.Comment: 4 pages, 3 figures, submitted to PR

    Bias of Particle Approximations to Optimal Filter Derivative

    Full text link
    In many applications, a state-space model depends on a parameter which needs to be inferred from a data set. Quite often, it is necessary to perform the parameter inference online. In the maximum likelihood approach, this can be done using stochastic gradient search and the optimal filter derivative. However, the optimal filter and its derivative are not analytically tractable for a non-linear state-space model and need to be approximated numerically. In [Poyiadjis, Doucet and Singh, Biometrika 2011], a particle approximation to the optimal filter derivative has been proposed, while the corresponding LpL_{p} error bonds and the central limit theorem have been provided in [Del Moral, Doucet and Singh, SIAM Journal on Control and Optimization 2015]. Here, the bias of this particle approximation is analyzed. We derive (relatively) tight bonds on the bias in terms of the number of particles. Under (strong) mixing conditions, the bounds are uniform in time and inversely proportional to the number of particles. The obtained results apply to a (relatively) broad class of state-space models met in practice

    A non-invasive measure of minerals and electrolytes in tissue

    Get PDF
    A system for collecting epithelial cells from the oral mucosa for the determination of ion concentration is discussed with application to the study of man's adaptation to microgravity. A number of characteristics of these cells influenced the choice for clinical testing. They are non-cornified epithelial cells located on the inferior aspect of the tongue; therefore, they are well protected from trauma. They have the capability of reflecting relatively recent physiologic changes since they are renewed every three days and have aerobic metabolism. Most importantly, they are easily accessible and can be removed by a wooden applicator stick with minimum discomfort. Smears of cells removed in this manner show predominantly individual cells rather than sheets of contiuous cells. This facilitates the visual isolation of single cells with the electron microscope for analysis. NASA's principle effort in the development of a test to measure the ion concentration in sublingual cells has been research by the biomedical program carried out by scientists with expertise in skeletal metabolism. These efforts were directed toward determining the biological meaning and deviations in interacellular ions in nonhuman primates and in male volunteers for experiments in a model for weightlessness. A brief one page summary of the experiments and results are presented

    Skeletal responses to spaceflight

    Get PDF
    The role of gravity in the determination of bone structure is elucidated by observations in adult humans and juvenile animals during spaceflight. The primary response of bone tissue to microgravity is at the interface of the mineral and matrix in the process of biomineralization. This response is manifested by demineralization or retarded growth in some regions of the skeleton and hypermineralization in others. The most pronounced effects are seen in the heelbone and skull, the most distally located bones relative to the heart. Ground based flight simulation models that focus on changes in bone structure at the molecular, organ, and whole body levels are described and compared to flight results. On Earth, the morphologic and compositional changes in the unloaded bones are very similar to changes during flight; however, the ground based changes appear to be more transient. In addition, a redistribution of bone mineral in gravity-dependent bones occurs both in space and during head down positioning on Earth. Longitudinal data provided considerable information on the influence of endocrine and muscular changes on bone structure after unloading

    Electron cooling and Debye-Waller effect in photoexcited bismuth

    Full text link
    By means of first principles calculations, we computed the effective electron-phonon coupling constant G0G_0 governing the electron cooling in photoexcited bismuth. G0G_0 strongly increases as a function of electron temperature, which can be traced back to the semi-metallic nature of bismuth. We also used a thermodynamical model to compute the time evolution of both electron and lattice temperatures following laser excitation. Thereby, we simulated the time evolution of (1 -1 0), (-2 1 1) and (2 -2 0) Bragg peak intensities measured by Sciaini et al [Nature 458, 56 (2009)] in femtosecond electron diffraction experiments. The effect of the electron temperature on the Debye-Waller factors through the softening of all optical modes across the whole Brillouin zone turns out to be crucial to reproduce the time evolution of these Bragg peak intensities

    Storage Capacity of the Tilinglike Learning Algorithm

    Get PDF
    The storage capacity of an incremental learning algorithm for the parity machine, the Tilinglike Learning Algorithm, is analytically determined in the limit of a large number of hidden perceptrons. Different learning rules for the simple perceptron are investigated. The usual Gardner-Derrida one leads to a storage capacity close to the upper bound, which is independent of the learning algorithm considered.Comment: Proceedings of the Conference Disordered and Complex Systems, King's College, London, July 2000. 6 pages, 1 figure, uses aipproc.st
    corecore