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1 A Simulation Study

In this section, we present some Monte Carlo experiments describing the performance of the procedure

of Section 3. Initially, we consider that the true data generating process is given by Equation ??, with

Dt = I(t > Tb); Tb = T/2, β = 10, and d1 = d2 = 1. In other words, the true model is:

ut = 10Dt + xt, ρ(L; d)xt = wt, ρ(L; d) = (1− L12)(1− L) (1)

with white noise wt, and T = 120, 240, 360, 480, 600 and 720. For this purpose, we generate Gaussian series

using the routines GASDEV and RAN3 of Press, Flannery, Teukolsky and Wetterling (1986),? and 1,000

replications are used in each case.
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Across Table 1 we report the probabilities of correctly determining the time of the break and the fractional

differencing parameters, using a grid of values for the time break T ∗ = T/10, T/10− 1, ..., (1), ..., 9T/10− 1

and 9T/10, and (d10, d20)-values from 0 to 2 with 0.2 increments. The most noticeable feature observed

in this table is that the procedure accurately determines the break date in all cases, and we find zero-

probabilities for all values of d10 and d20 if T ∗ is different from the true time of the break. Thus, we only

report across the table the values of d10 and d20 where we observe a non-zero probability. We see that

if T = 120, higher probabilities are obtained at other values than the true ones (e.g. d10 = d20 = 0.8),

however, if T > 120, the highest probabilities are obtained in all cases at d10 = d20 = 1, and if T = 600,

the probabilities corresponding to the true parameters are higher than 0.9. Note that these probabilities are

based on the grid employed for the orders of integration and hence the probabilities becomes lower as the

range of values for the increments in the d’s is reduced. On the other hand, larger increments produce larger

probabilities of detecting the true values.

(Tables 1 - 3 about here)

We also performed the experiment with other values for the time break and the fractional differencing

parameters. Table 2 displays the results for Tb = T/4, d10 = 0.4 and d20 = 0.8 (i.e. stationarity in the first

subsample but nonstationarity after the shock), while Table 3 refers to the case of Tb = 3T/4, d10 = 0.8

and d20 = 0.4 (i.e. stationarity only after the break). The results are similar in both cases, and they are

completely in line with those given in Table 1. Thus, if T = 600, the probability of correctly determining

the true parameters exceeds 0.9 in all cases.

The accuracy in the estimation of the break date in the results presented so far might be a consequence

of the coefficient used for the break dummy in equation (7). Thus, in Table 4, we examine the probability of

correctly determining the break for different coefficients for the dummy variable. We now assume that the

break date takes place at T/2, with d1 = d2 = 1, and look at the probability of detecting the true break date
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for a grid of values (T/10, T/10 + 1, ..., 9T/10− 1, 9T/10), using as coefficients for the deterministic break,

β = 10, 5, 3 and 1.

(Table 4 about here)

We observe in this table that if β = 10 or 5, the procedure correctly determines the break date in the

100% of the cases even for a sample size of T = 120. However, reducing the magnitude of the coefficient, the

probabilities are very small in some cases, especially if the sample size is small.

2 Robinson (1994) Score Test for Seasonal and Long-run Frac-

tional Integration

The set-up in Robinson (1994) is the model given by equations (3) − (5), i.e, It is supposed that wt has

spectral density given by:

ut = β0zt + xt, , (1− L12)d1(1− L)d2xt = wt, (2)

and suppose that the wt above has a spectral density given by:

f(λ; τ) =
σ2

2π
g(λ; τ),−π < λ < π,

where the scalar σ2 is known and g is a function of known form, which depends on frequency λ and the

unknown (q × 1) parameter vector τ .

Unless g is a completely known function (e.g., g ≡ 1, as when wt is white noise), we have to estimate the

nuisance parameter τ , for example by τ̂ = argminτ∈T∗σ2(τ) , where T ∗ is a suitable subset of Rq Euclidean

space, and:
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σ2(τ) =
2π

T

T−1X
s=1

g(λs; τ)
−1Iw(λs)

where Iŵ is the periodogram of ŵt = (1− L12)d1(1− L)d2 ût − β̂
0
st,

β̂ = (
TX
t=1

s2t )
−1

TX
t=1

st(1− L12)d10(1− L)d20yt,

st = (1− L12)d10(1− L)d20zt,

evaluated at the discrete frequencies:

λs =
2πs

T
,

which is given by

Iŵ(λs) = |(2πT )−1/2
TX
t=1

bwte
iλst|2.

Note that the tests are purely parametric, requiring specific modelling assumptions regarding the short

memory specification of wt. Thus, for example, if wt is an AR process of form: φ(L)wt = t, then g =

|φ(eiλ)|−2, with σ2 = V ( t), so that the AR coefficients are a function of τ .

The test statistic, which is derived via Lagrange Multiplier (LM) principle, adopts the form:

R̂ =
T

σ̂4
â0Â−1â, (3)

where T is the sample size, and
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σ̂2 = σ2(τ̂) =
2π

T

T−1X
s=1

ψ(λs)g(λs; τ̂)
−1I(λs);

â =
−2π
T

∗X
s

ψ(λs)g(λs; τ̂)
−1I(λs);

Â =
2

T
(
∗X
j

ψ(λs)ψ(λs)
0

−
∗X
j

ψ(λs) (̂λs)
0(
∗X
j

ˆ(λs)ˆ(λs)
0))−1

∗X
j

ˆ(λs)ψ(λ
0
s))

ψ(λs)
0 = [ψ1(λs), ψ2(λs)];

ψ1(λs) = log|2sinλs
2
|;

ψ2(λs) = log|2(sinλs/2|+ log(2cos(λs/2))

+log|2cosλs|+ log|2(cosλs − cos(π/3)|

+log|2(cosλs − cos(2.π/3)|

+log|2(cosλs − cos(π/6)|+ log|2(cosλs − cos(5.π/6)|;

ˆ(λs) =
δ

δτ
logg(λs; τ̂)

and the summation on * in the above expressions is over λ ∈ M where M = λ : −π < λ < π, λ *

(ρk − λ1, ρk + λ1), k = 1, 2, ..., s such that ρk, k = 1, 2, ..., s are the distinct poles of ψ(λ) on (−π, π].

3 Asymptotic Theory of the Test of Robinson (1994) in the Pres-

ence of a Structural Break

It is straightforward from Robinson (1994) to show that the test statistic has a standard null limit behavior.

For simplicity we just concentrate here on the case of white noise wt. For this purpose we need to rely on the
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definitions 1, 2 and 3 referring respectively to the classes F, G and H in Appendix 2 in Robinson (1994). The

class F imposes a martingale difference assumption on the disturbances wt, that is substantially weaker than

the Gaussianity assumptionused in motivating the test. The class G imposes a mild lack of multicollinearity

on the differenced series for zt, which is satisfied by the dummy variables employed in the paper. The class

H refers to some technical restrictions required to approximate integrals by sums. Note that under the null

hypothesis of d = d0, the model under analysis in (3), (4) and (5) becomes:

ρ(L; d)ut = βρ(L, d0)Dt +wt, t = 1, ..., T

where wt is assumed to be I(0) and thus, standard theory applies.

We call Wt = ρ(L, d0)Dt and D =
PT

t=1WtW 0
t . Then, it can be easily seen that EkD1/2(β̂ − β)k2 =

o(1) as T → ∞, where β̂ is the OLS estimation of β. The only requirement is that D, define as above

must be a positive definite matrix for sufficiently large T , and this condition is satisfied by the dummy

variables employed in the paper. With respect to the test statistic, we first decompose â as described

in Appendix 1 into (â − a) + (a − a∗) + a∗, where a∗ = −2π
T

P∗
s ψ(λs)Iw(λs) and a = −Pt−1

k=1 ψkCw(k),

Cw(k) =
1

t−k
PT−k

t=1 wtwt+k. It follows from Theorem 1 in Robinson (1994) that (â − a) = op(T
−1/2),

(a−a∗) = op(T
−1/2) and a∗ →d N(0, σ

4Ψ), where Ψ = 1
2π

R π
−π ψ(λ)ψ(λ)

0dλ. On the other hand, noting that

w2t −σ2 are stationary martingale differences, and that Cw−Cw →p 0, then Cw(0)→p σ
2 and thus, it follows

that σ̂2 →p σ
2. Finally, Â→ A by Lemma 3 in Robinson (1994). Similar arguments can be developed with

respect to the local efficiency power property of the tests (see Theorem 2 in Robinson, 1994) and with the

extension to the weak autocorrelation for the I(0) disturbances wt (Theorem 3).
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Table 1: Break at T/2 with d1=1 and d2=1.

d1 (Seasonality) d2 (Long run) T=120 T=240 T=360 T=480 T=600 T=720
0.6 0.0 0.010 – – – – –
0.6 0.8 0.010 – – – – –
0.8 0.8 0.234 0.043 0.010 – – –
1.0 0.8 0.085 0.141 0.087 0.021 0.014 0.007
1.2 0.8 0.010 – – – – –
1.0 0.2 0.021 0.010 – – – –
0.6 1.0 0.010 – – – – –
0.8 1.0 0.106 0.032 0.032 0.043 0.023 0.006
1.0 1.0 0.127 0.293 0.500 0.641 0.905 0.972
1.2 1.0 0.010 0.054 – 0.010 – –
1.4 1.0 0.010 – – – – –
0.8 1.2 0.053 0.065 0.021 0.011 – –
1.0 1.2 0.074 0.217 0.250 0.271 0.058 0.015
1.2 1.2 0.010 0.021 0.010 – – –
0.6 1.4 0.021 – – – – –
0.8 1.4 0.148 0.065 0.043 – – –
1.0 1.4 0.063 0.065 0.011 – – –
1.2 1.4 0.010 – – – – –

Note: _ means 0−probability
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Table 2: Break at T/4 with d1=0.8 and d2=0.4.

d1 (Seasonality) d2 (Long run) T=120 T=240 T=360 T=480 T=600 T=720
0.6 0.2 0.106 0.174 0.043 0.010 – –
0.8 0.2 0.159 0.281 0.173 0.065 0.043 0.020
1.0 0.2 0.021 0.010 – – – –
0.4 0.4 0.063 – – – – –
0.6 0.4 0.393 0.141 0.109 0.066 0.054 0.018
0.8 0.4 0.256 0.359 0.663 0.847 0.902 0.962
1.0 0.4 0.011 0.032 0.011 0.011 – –

Note: _ means 0−probability
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Table 3: Break at 3T/4 with d1=0.4 and d2=0.8.

d1 (Seasonality) d2 (Long run) T=120 T=240 T=360 T=480 T=600 T=720
0.0 0.4 0.085 0.010 – – – –
0.2 0.4 0.022 – – – – –
0.0 0.6 0.095 0.043 – – – –
0.2 0.6 0.297 0.163 0.087 0.019 – –
0.4 0.6 0.127 0.271 0.163 0.043 0.044 0.021
0.6 0.6 0.023 0.010 – – – –
0.8 0.6 – 0.011 – – – –
0.2 0.8 0.138 0.032 0.076 0.054 0.055 0.011
0.4 0.8 0.128 0.380 0.597 0.837 0.891 0.960
0.6 0.8 0.009 0.009 0.010 0.010 – –
0.2 1.0 – 0.009 – – – –
0.4 1.0 0.020 0.021 – 0.010 – –
0.6 1.0 – 0.010 0.043 0.021 0.010 0.008
0.2 1.2 0.053 0.020 0.021 – – –

Note: _ means 0−probability
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Table 4: Probability of detecting the true break fraction for different break coefficients, beta.

β T=120 T=240 T=360 T=480 T=600 T=720

10 100 100 100 100 100 100
5 100 100 100 100 100 100
3 83.33 92.30 100 100 100 100
1 10.71 13.09 17.98 20.5 33.39 33.57
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