157 research outputs found

    APC/C and SCF cyclin F Constitute a Reciprocal Feedback Circuit Controlling S-Phase Entry

    Get PDF
    The anaphase promoting complex/cyclosome (APC/C) is an ubiquitin ligase and core component of the cell-cycle oscillator. During G1 phase, APC/C binds to its substrate receptor Cdh1 and APC/C(Cdh1) plays an important role in restricting S-phase entry and maintaining genome integrity. We describe a reciprocal feedback circuit between APC/C and a second ubiquitin ligase, the SCF (Skp1-Cul1-F box). We show that cyclin F, a cell-cycle-regulated substrate receptor (F-box protein) for the SCF, is targeted for degradation by APC/C. Furthermore, we establish that Cdh1 is itself a substrate of SCF(cyclin F). Cyclin F loss impairs Cdh1 degradation and delays S-phase entry, and this delay is reversed by simultaneous removal of Cdh1. These data indicate that the coordinated, temporal ordering of cyclin F and Cdh1 degradation, organized in a double-negative feedback loop, represents a fundamental aspect of cell-cycle control. This mutual antagonism could be a feature of other oscillating systems

    Efficacy and tolerability of gemtuzumab ozogamicin (anti-CD33 monoclonal antibody, CMA-676, Mylotarg(®)) in children with relapsed/refractory myeloid leukemia

    Get PDF
    BACKGROUND: Gemtuzumab ozogamicin (GO) is a cytotoxic anti-CD33 monoclonal antibody that has given promising preliminary results in adult myeloid CD33+ AML. We conducted a retrospective multicenter study of 12 children treated with GO on a compassionate basis (median age 5.5 y). Three patients (2 MDS/AML, 1 JMML) were refractory to first-line treatment, 8 patients with de novo AML were in refractory first relapse, and one patient with de novo AML was in 2(nd )relapse after stem cell transplantation (SCT). CD33 expression exceeded 20% in all cases. METHODS: GO was administered alone, at a unit dose of 3–9 mg/m(2), once (3 patients), twice (3 patients), three (5 patients) or five times (1 patient). Mean follow-up was 128 days (8–585 d). RESULTS: There were three complete responses (25%) leading to further curative treatment (SCT). Treatment failed in the other nine patients, and only one patient was alive at the end of follow-up. NCI-CTC grade III/IV adverse events comprised hematological toxicity (n = 12), hypertransaminasemia (n = 2), allergy and hyperbilirubinemia (1 case each). There was only one major adverse event (grade IV allergy). No case of sinusoidal obstruction syndrome occurred. CONCLUSION: These results warrant a prospective trial of GO in a larger population of children with AML

    Continuous Quinacrine Treatment Results in the Formation of Drug-Resistant Prions

    Get PDF
    Quinacrine is a potent antiprion compound in cell culture models of prion disease but has failed to show efficacy in animal bioassays and human clinical trials. Previous studies demonstrated that quinacrine inefficiently penetrates the blood-brain barrier (BBB), which could contribute to its lack of efficacy in vivo. As quinacrine is known to be a substrate for P-glycoprotein multi-drug resistance (MDR) transporters, we circumvented its poor BBB permeability by utilizing MDR0/0 mice that are deficient in mdr1a and mdr1b genes. Mice treated with 40 mg/kg/day of quinacrine accumulated up to 100 µM of quinacrine in their brains without acute toxicity. PrPSc levels in the brains of prion-inoculated MDR0/0 mice diminished upon the initiation of quinacrine treatment. However, this reduction was transient and PrPSc levels recovered despite the continuous administration of quinacrine. Treatment with quinacrine did not prolong the survival times of prion-inoculated, wild-type or MDR0/0 mice compared to untreated mice. A similar phenomenon was observed in cultured differentiated prion-infected neuroblastoma cells: PrPSc levels initially decreased after quinacrine treatment then rapidly recovered after 3 d of continuous treatment. Biochemical characterization of PrPSc that persisted in the brains of quinacrine-treated mice had a lower conformational stability and different immunoaffinities compared to that found in the brains of untreated controls. These physical properties were not maintained upon passage in MDR0/0 mice. From these data, we propose that quinacrine eliminates a specific subset of PrPSc conformers, resulting in the survival of drug-resistant prion conformations. Transient accumulation of this drug-resistant prion population provides a possible explanation for the lack of in vivo efficacy of quinacrine and other antiprion drugs

    Differential expression of genes in follicular cells of swines

    Get PDF
    The main purpose of the present study was to identify for candidate genes related to ovulation in swines. To do so, it was investigated in ovarian follicular cells through quantitative real-time PCR the differential expression of the following genes: steroidogenic acute regulator (STAR), GATA-binding protein 4 (GATA), prostaglandin F2α (PGF2α), progesterone receptor (P4R), follicle-stimulating hormone receptor (FSHR), and cytochrome P450 aromatase (CYP19). These genes encode hormone receptors (FSHR and P4R), hormone (PGF2α), steroidogenic proteins (STAR and CYP19) and transcription factor (GATA). Folicular cells were collected from sows with high and low number of piglets/litters during the follicular phase of the estrus cycle. There was difference in transcript abundance among low and high prolific sows for the STAR, GATA, PGF2α, P4R and CYP19 genes. For the FSHR gene, the fold change was not considered to be significantly different. Because in the present study only the transcript level of the above mentioned genes was analyzed, no inference can be made regarded to protein translation or activity. Therefore, gene sequence trials and other functional studies will be necessary to complement the present results, allowing a better understanding on biological complexity of these genes and their use as markers for prolificity in swines.O objetivo neste trabalho foi identificar genes candidatos relacionados à ovulação em suínos. Para tanto, investigou-se a expressão diferencial dos genes STAR (steroidogenic acute regulator), GATA (GATA-binding protein 4), PGF2α (prostaglandin F2α), P4R (progesterone receptor), FSHR (follicle-stimulating hormone receptor) e CYP19 (cytochrome P450 aromatase) em células foliculares ovarianas por meio de reação em cadeia da polimerase em tempo real (qRT-PCR) quantitativo em tempo real. Esses genes codificam para receptores hormonais (FSHR e P4R) hormônio (PGF2α), proteínas esteroidogênicas (STAR e CYP19) e fator de transcrição (GATA). As células foliculares foram coletadas durante a fase folicular do ciclo estral de porcas com alto e baixo número de leitões/leitegada. Houve diferença na abundância de transcritos entre porcas com alta e baixa prolificidade para os genes STAR, GATA, PGF2α, P4R and CYP19. Para o gene do FSHR, a alteração na abundância dos transcritos não foi significativamente diferente. Considerando que foi analisado somente o nível de transcrição desses genes mencionados, não se pode fazer inferências com relação à tradução ou atividade proteica. Portanto, ensaios de sequenciamento gênico e outras análises funcionais serão necessários para complementar esses achados e possibilitar melhor entendimento da complexidade biológica desses genes e seu uso como marcadores para prolificidade em suínos
    corecore