7,047 research outputs found

    Aspects of reduction and transformation of Lagrangian systems with symmetry

    Get PDF
    This paper contains results on geometric Routh reduction and it is a continuation of a previous paper where a new class of transformations is introduced between Lagrangian systems obtained after Routh reduction. In general, these reduced Lagrangian systems have magnetic force terms and are singular in the sense that the Lagrangian does not depend on some velocity components. The main purpose of this paper is to show that the Routh reduction process itself is entirely captured by the application of such a new transformation on the initial Lagrangian system with symmetry.Comment: To appear in Journal of Geometric Mechanic

    Communication: Inferring the equation of state of a metastable hard-sphere fluid from the equation of state of a hard-sphere mixture at high densities

    Full text link
    A possible approximate route to obtain the equation of state of the monodisperse hard-sphere system in the metastable fluid region from the knowledge of the equation of state of a hard-sphere mixture at high densities is discussed. The proposal is illustrated by using recent Monte Carlo simulation data for the pressure of a binary mixture. It is further shown to exhibit high internal consistency.Comment: 4 pages, 2 figures; v2: Simulation data for one-component hard spheres included in Fig.

    How `sticky' are short-range square-well fluids?

    Get PDF
    The aim of this work is to investigate to what extent the structural properties of a short-range square-well (SW) fluid of range λ\lambda at a given packing fraction and reduced temperature can be represented by those of a sticky-hard-sphere (SHS) fluid at the same packing fraction and an effective stickiness parameter τ\tau. Such an equivalence cannot hold for the radial distribution function since this function has a delta singularity at contact in the SHS case, while it has a jump discontinuity at r=λr=\lambda in the SW case. Therefore, the equivalence is explored with the cavity function y(r)y(r). Optimization of the agreement between y_{\sw} and y_{\shs} to first order in density suggests the choice for τ\tau. We have performed Monte Carlo (MC) simulations of the SW fluid for λ=1.05\lambda=1.05, 1.02, and 1.01 at several densities and temperatures TT^* such that τ=0.13\tau=0.13, 0.2, and 0.5. The resulting cavity functions have been compared with MC data of SHS fluids obtained by Miller and Frenkel [J. Phys: Cond. Matter 16, S4901 (2004)]. Although, at given values of η\eta and τ\tau, some local discrepancies between y_{\sw} and y_{\shs} exist (especially for λ=1.05\lambda=1.05), the SW data converge smoothly toward the SHS values as λ1\lambda-1 decreases. The approximate mapping y_{\sw}\to y_{\shs} is exploited to estimate the internal energy and structure factor of the SW fluid from those of the SHS fluid. Taking for y_{\shs} the solution of the Percus--Yevick equation as well as the rational-function approximation, the radial distribution function g(r)g(r) of the SW fluid is theoretically estimated and a good agreement with our MC simulations is found. Finally, a similar study is carried out for short-range SW fluid mixtures.Comment: 14 pages, including 3 tables and 14 figures; v2: typo in Eq. (5.1) corrected, Fig. 14 redone, to be published in JC

    Contact values of the particle-particle and wall-particle correlation functions in a hard-sphere polydisperse fluid

    Full text link
    The contact values g(σ,σ)g(\sigma,\sigma') of the radial distribution functions of a fluid of (additive) hard spheres with a given size distribution f(σ)f(\sigma) are considered. A ``universality'' assumption is introduced, according to which, at a given packing fraction η\eta, g(σ,σ)=G(z(σ,σ))g(\sigma,\sigma')=G(z(\sigma,\sigma')), where GG is a common function independent of the number of components (either finite or infinite) and z(σ,σ)=[2σσ/(σ+σ)]μ2/μ3z(\sigma,\sigma')=[2 \sigma \sigma'/(\sigma+\sigma')]\mu_2/\mu_3 is a dimensionless parameter, μn\mu_n being the nn-th moment of the diameter distribution. A cubic form proposal for the zz-dependence of GG is made and known exact consistency conditions for the point particle and equal size limits, as well as between two different routes to compute the pressure of the system in the presence of a hard wall, are used to express G(z)G(z) in terms of the radial distribution at contact of the one-component system. For polydisperse systems we compare the contact values of the wall-particle correlation function and the compressibility factor with those obtained from recent Monte Carlo simulations.Comment: 9 pages, 7 figure

    Evaluation of the potential for dissolved oxygen ingress into deep sedimentary basins during a glaciation event

    Get PDF
    Geochemical conditions in intracratonic sedimentary basins are currently reducing, even at relatively shallow depths. However, during glaciation-deglaciation events, glacial meltwater production may result in enhanced recharge (Bea et al., 2011; and Bea et al., 2016) potentially having high concentrations of dissolved oxygen (O2). In this study, the reactive transport code Par-MIN3PTHCm was used to perform an informed, illustrative set of simulations assessing the depth of penetration of low salinity, O2-rich, subglacial recharge. Simulation results indicate that the large-scale basin hydrostratigraphy, in combination with the presence of dense brines at depth, results in low groundwater velocities during glacial meltwater infiltration, restricting the vertical ingress of dilute recharge waters. Furthermore, several geochemical attenuation mechanisms exist for O2, which is consumed by reactions with reduced mineral phases and solid organic matter (SOM). The modeling showed that effective oxidative mineral dissolution rates and SOMoxidation rates between 5 × 10-15 and 6 × 10-13 mol dm-3 bulk s-1 were sufficient to restrict the depth of O2 ingress to less than 200m.These effective rates are low and thus conservative, in comparison to rates reported in the literature. Additional simulations with more realistic, yet still conservative, parameters reaffirm the limited ability for O2 to penetrate into sedimentary basin rocks during a glaciation-deglaciation event.Fil: Bea, Sergio Andrés. Universidad Nacional del Centro de la Provincia de Buenos Aires. Rectorado. Instituto de Hidrología de Llanuras - Sede Tandil. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto de Hidrología de Llanuras - Sede Tandil; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Su, Danyang. University of British Columbia; CanadáFil: Mayer, Klaus Ulrich. University of British Columbia; CanadáFil: MacQuarrie, T. B.. University of New Brunswick; Canad

    Contact values of the radial distribution functions of additive hard-sphere mixtures in d dimensions: A new proposal

    Full text link
    The contact values gij(σij)g_{ij}(\sigma_{ij}) of the radial distribution functions of a dd-dimensional mixture of (additive) hard spheres are considered. A `universality' assumption is put forward, according to which gij(σij)=G(η,zij)g_{ij}(\sigma_{ij})=G(\eta, z_{ij}), where GG is a common function for all the mixtures of the same dimensionality, regardless of the number of components, η\eta is the packing fraction of the mixture, and zijz_{ij} is a dimensionless parameter that depends on the size distribution and the diameters of spheres ii and jj. For d=3d=3, this universality assumption holds for the contact values of the Percus--Yevick approximation, the Scaled Particle Theory, and, consequently, the Boublik--Grundke--Henderson--Lee--Levesque approximation. Known exact consistency conditions are used to express G(η,0)G(\eta,0), G(η,1)G(\eta,1), and G(η,2)G(\eta,2) in terms of the radial distribution at contact of the one-component system. Two specific proposals consistent with the above conditions (a quadratic form and a rational form) are made for the zz-dependence of G(η,z)G(\eta,z). For one-dimensional systems, the proposals for the contact values reduce to the exact result. Good agreement between the predictions of the proposals and available numerical results is found for d=2d=2, 3, 4, and 5.Comment: 10 pages, 11 figures; Figure 1 changed; Figure 5 is new; New references added; accepted for publication in J. Chem. Phy

    Fourth virial coefficients of asymmetric nonadditive hard-disc mixtures

    Full text link
    The fourth virial coefficient of asymmetric nonadditive binary mixtures of hard disks is computed with a standard Monte Carlo method. Wide ranges of size ratio (0.05q0.950.05\leq q\leq 0.95) and nonadditivity (0.5Δ0.5-0.5\leq \Delta\leq 0.5) are covered. A comparison is made between the numerical results and those that follow from some theoretical developments. The possible use of these data in the derivation of new equations of state for these mixtures is illustrated by considering a rescaled virial expansion truncated to fourth order. The numerical results obtained using this equation of state are compared with Monte Carlo simulation data in the case of a size ratio q=0.7q=0.7 and two nonadditivities Δ=±0.2\Delta=\pm 0.2.Comment: 9 pages, 7 figures; v2: section on equation of state added; tables moved to supplementary material (http://jcp.aip.org/resource/1/jcpsa6/v136/i18/p184505_s1#artObjSF

    Group-Lasso on Splines for Spectrum Cartography

    Full text link
    The unceasing demand for continuous situational awareness calls for innovative and large-scale signal processing algorithms, complemented by collaborative and adaptive sensing platforms to accomplish the objectives of layered sensing and control. Towards this goal, the present paper develops a spline-based approach to field estimation, which relies on a basis expansion model of the field of interest. The model entails known bases, weighted by generic functions estimated from the field's noisy samples. A novel field estimator is developed based on a regularized variational least-squares (LS) criterion that yields finitely-parameterized (function) estimates spanned by thin-plate splines. Robustness considerations motivate well the adoption of an overcomplete set of (possibly overlapping) basis functions, while a sparsifying regularizer augmenting the LS cost endows the estimator with the ability to select a few of these bases that ``better'' explain the data. This parsimonious field representation becomes possible, because the sparsity-aware spline-based method of this paper induces a group-Lasso estimator for the coefficients of the thin-plate spline expansions per basis. A distributed algorithm is also developed to obtain the group-Lasso estimator using a network of wireless sensors, or, using multiple processors to balance the load of a single computational unit. The novel spline-based approach is motivated by a spectrum cartography application, in which a set of sensing cognitive radios collaborate to estimate the distribution of RF power in space and frequency. Simulated tests corroborate that the estimated power spectrum density atlas yields the desired RF state awareness, since the maps reveal spatial locations where idle frequency bands can be reused for transmission, even when fading and shadowing effects are pronounced.Comment: Submitted to IEEE Transactions on Signal Processin
    corecore