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Abstract

This paper contains results on geometric Routh reduction and it is a continuation of a
previous paper [7] where a new class of transformations is introduced between Lagrangian
systems obtained after Routh reduction. In general, these reduced Lagrangian systems have
magnetic force terms and are singular in the sense that the Lagrangian does not depend
on some velocity components. The main purpose of this paper is to show that the Routh
reduction process itself is entirely captured by the application of such a new transformation
on the initial Lagrangian system with symmetry.
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1 Introduction

A modern differential geometric treatment of Routh reduction for mechanical systems, as a
Lagrangian analogue of Hamiltonian symplectic reduction, started in [14]. In that paper, a non-
Abelian version of the classical reduction procedure of Routh was developed, thereby emphasizing
the role of the magnetic or gyroscopic force term which appears after reduction. When taking
this force term into account, the solutions of the Euler-Lagrange equations for the reduced
Lagrangian, also called the Routhian, are the projections of those corresponding to the original
Lagrangian. The definition of the Routhian involved the use of the mechanical connection, which
is the natural connection induced by the kinetic energy and the symmetry, and is the one leading
to a reduced Lagrangian of mechanical type (see [11]). This work received a natural continuation
in [5, 13] where, in particular, the variational aspects of the theory were further studied.
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A key result in the further development of the theory is the realization of the reduced space on
which the Routhian is defined as a fiber product (a result sometimes referred to as the realization

theorem, see [5, 13]). This result was originally proved for mechanical systems, but remains valid
for arbitrary Lagrangians on which an additional regularity condition is imposed, as shown in [8].
The generalization for non-mechanical Lagrangians of the Routh technique was also studied in [2]
from the perspective of the Euler-Lagrange vector field. A different approach, from the point of
view of exterior differential systems, is to be found in [15].

The results presented in this paper are best situated within an ongoing research project related to
the reduction theory of Lagrangian systems with symmetry and, in particular, to the technique
of Routh reduction. In previous papers, different aspects of geometric Routh reduction have
been studied. In [8] the close relationship between Routh reduction and symplectic reduction
was demonstrated, and this lead, on the one hand, to a broadening of the framework for applying
Routh reduction by incorporating the so-called quasi-invariant Lagrangian systems and, on the
other hand, to a description of Routh reduction by stages [10]. In [9] the regularity condition on
the momentum map that is typical for Routh reduction, is relaxed. Then, the class of ‘magnetic
Lagrangian systems’ was introduced in [10], in the context of Routh reduction by stages, and
its characteristic property is precisely that it is closed under the procedure of Routh reduction.
Finally, in [7] a special class of transformations between magnetic Lagrangian systems was intro-
duced and, by applying such a transformation, the magnetic Lagrangian system obtained after
reduction of a Lagrangian system with respect to a full semi-direct product symmetry group
could be identified with the system obtained after reduction by an Abelian subgroup.

The purpose of this paper is twofold. Firstly, we revisit this new concept of transformation
in a more general framework and formalize its definition. Secondly, we demonstrate that the
process of Routh reduction may be understood as the result of two steps: the application of
such a transformation to the initial Lagrangian system with symmetry, followed by a trivial
reduction. This indicates the importance of these transformations and sheds some new light on
the geometric structure underlying Lagrangian systems with symmetry.

The paper is organized as follows. In Section 2 we recall the basics about magnetic Lagrangian
systems and we give a description of Routh reduction in this framework. We then study trans-
formations between magnetic Lagrangian systems in Section 3, and describe a special class of
transformations preserving some geometric properties of reduced spaces, among others the re-
duced presymplectic structure. We conclude Section 3 by giving the explicit transformation that
corresponds to a restriction on the level set of the momentum map in the case of a standard
Lagrangian system. In Section 4 we complete the picture by describing a general transformation
for an arbitrary magnetic Lagrangian system, including a reduction step. Finally, in Section 5
we briefly discuss an analogue of these transformations in a Hamiltonian framework.

2 Background and notations

Group actions and bundles. Throughout this paper ΦM : G×M →M denotes a left action
of the Lie group G on the manifold M , and we will use the shorthand notations ΦM (g,m) =
gm = g ·m. As usual, we let g denote the Lie algebra of G and Ad the adjoint action of G on g.
The infinitesimal action of ΦM on g, referred to as the infinitesimal generator map, is

σMm : g → TmM,

ξ 7→ ξM (m) := d/dǫ|0(exp ǫξm),
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where exp : g → G is the exponential map. M can be naturally fibered over the orbit space
M/G = {[m]G : m ∈ M} (here [m]G is the G-orbit through m) via π : M → M/G;m → [m]G.
It is well known that under the assumption that the action is free and proper, π : M → M/G
has the structure of a principal G-bundle (see [6]). From now on, unless otherwise stated, all
actions are assumed to satisfy these requirements.

When a fiber bundle ǫ : P → Q is given, the fiber products TQ ×Q P and T ∗Q ×Q P will be
abbreviated by TPQ and T ∗

PQ respectively. We shall denote points on TPQ by (vq, p), where
vq ∈ TqQ and p ∈ P is such that ǫ(p) = q (and, in the same way, (αq, p) denotes an arbitrary
point in T ∗

PQ). The contraction of an element (αq, p) ∈ T ∗
PQ with (vq, p) ∈ TPQ is defined as

〈(αq, p), (vq, p)〉 := 〈αq , vq〉.

Definition 2.1. Let ǫ : P → Q be a fiber bundle.

1. τ1 : TPQ→ TQ is the projection that maps (vq, p) ∈ TPQ onto vq ∈ TQ.

2. τ2 : TPQ→ P is the projection that maps (vq, p) ∈ TPQ onto p ∈ P.

3. π1 : T ∗
PQ→ T ∗Q is the projection that maps (αq, p) ∈ T ∗

PQ onto αq ∈ T ∗Q.

4. π2 : T ∗
PQ→ P is the projection that maps (αq, p) ∈ T ∗

PQ onto p ∈ P.

In agreement with the previous definition, when working with several bundles ǫ(i) : Pi → Qi we

let τ
(i)
1 and τ

(i)
2 (respectively, π

(i)
1 and π

(i)
2 ) denote the corresponding projection maps of TPi

Qi
(resp. T ∗

Pi
Qi).

The vertical tangent space to the fibration ǫ at the point p ∈ P is Vpǫ := kerTpǫ. A connection
A on the fiber bundle ǫ : P → Q is a V ǫ-valued 1-form A on P such that A(vp) = vp, for all vp
in V ǫ. In the case of a principal fiber bundle ǫ : P → P/G with structure group G a connection
A determines a g-valued 1-form A on P such that σP ◦A = A, and as a consequence A(ξP ) = ξ,
for all ξ ∈ g. A connection is called a principal connection if in addition A is equivariant, or
(

Φ∗
gA

)

(vp) = Adg · A(vp), for all g ∈ G and vp ∈ TP . For any element µ ∈ g∗, Aµ denotes a
1-form on P obtained by contraction of µ and the values of principal connection A on the level
of the Lie algebra: Aµ(v) = 〈A(v), µ〉.

If we are given a chain of bundle structures P
ǫ1−→ Q

ǫ2−→ R, a connection on ǫ2 : Q→ R induces
a V ǫ2-valued 1-form on P defined by AP (vp) := A(Tpǫ1(vp)). If, additionally, ǫ2 : Q → Q/G
is a principal fiber bundle, we can construct a g-valued 1-form on P as follows: AP (vp) :=
A(Tpǫ1(vp)). Following the previous convention, we denote Aµ(v) = 〈AP (v), µ〉 its contraction
with a given µ ∈ g∗.

Magnetic Lagrangian systems. As mentioned in the introduction, magnetic Lagrangian
systems appear naturally when applying Routh reduction to a Lagrangian system with symmetry.
We now give a general definition of such a system.

Definition 2.2. A magnetic Lagrangian system is a triple (ǫ : P → Q,L,B) where ǫ : P → Q is
a fiber bundle, L is a smooth function on the fiber product TPQ and B is a closed 2-form on P .

P is thereby playing the role of configuration space of the system, L is called the Lagrangian
and B is referred to as the magnetic 2-form. The standard notions of Legendre transformation
and of energy, carry over to this new setting in a straightforward way:
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Definition 2.3. Let (ǫ : P → Q,L,B) be a magnetic Lagrangian system. Then:

1. The fiber derivative of L is the map FL : TPQ→ T ∗
PQ sending (vq , p) ∈ TPQ into (αq, p) ∈

T ∗
PQ, where αq ∈ T ∗

qQ is (uniquely) determined by the relation

〈αq, wq〉 =
d

du

∣

∣

∣

∣

u=0

L(vq + uwq, p), for all wq ∈ TqQ

2. The energy is the function on TPQ defined by EL(vq, p) = 〈FL(vq, p), (vq, p)〉 − L(vq, p).

There is a natural way to construct a closed 2-form ΩL,B on TPQ providing a generalization of
the classical notion of Poincaré-Cartan 2-form, i.e.

ΩL,B := FL∗(π∗
1ωQ + π∗

2B) .

For later use, we give the coordinate expression of this 2-form. We will work with coordinates
adapted to the fibration ǫ. If (qi) are local coordinates on Q, (qi, pa) will denote bundle-adapted
coordinates on P . Hence, on TPQ we have coordinates (qi, vi, pa) (vi denotes the i-th velocity
component q̇i), and the Lagrangian L is a function dependent of (qi, vi, pa). Straightforward
computations show:

ΩL,B = d

(

∂L

∂vi

)

∧ dqi +
1

2
Bijdq

i ∧ dqj + Biadq
i ∧ dpa +

1

2
Babdp

a ∧ dpb. (1)

In the case where the 2-form π∗
1ωQ + π∗

2B on T ∗
PQ is symplectic and FL is a (global) diffeomor-

phism, we say that the magnetic Lagrangian system (ǫ : P → Q,L,B) is (hyper)regular. This
guarantees that ΩL,B is a symplectic form.

A curve p(t) ∈ P induces a curve on TPQ, namely γ(t) := (q̇(t), p(t)), where q(t) = ǫ(p(t)).
The curve p(t) is said to be a solution of the Euler-Lagrange (EL) equations iff γ(t) satisfies the
equation

iγ̇(t)Ω
L,B(γ(t)) = −dEL(γ(t)). (2)

The reader is referred to [10] for a coordinate expression of these EL equations. We conclude
with two remarks:

• The above definition of a magnetic Lagrangian system incorporates the standard concept
of a Lagrangian system on a manifold Q by letting P = Q, ǫ the identity and B = 0.

• The Lagrangian L of any magnetic Lagrangian system can be pulled-back to a function
on TP and determines there a standard Lagrangian system with a magnetic force term,
whose EL equations are precisely (2). Since this L on TP does not depend on all velocity
components, it is a singular Lagrangian by construction.

Hyperregular magnetic Lagrangian systems, although singular from a classical point of view, are
amenable to a symplectic description, and it is therefore possible to study their dynamics using
a Hamiltonian framework.
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Routh reduction. Assume a hyperregular standard Lagrangian system (P = Q,L,B = 0) is
given, and let ΩL := FL∗ωQ be its Poincaré-Cartan symplectic form. Let ΦQ = Φ be a free and
proper G-action on Q such that L is invariant with respect to its tangent lift TΦ, and let JL be
the equivariant momentum map JL : TQ→ g∗ for TΦ:

〈JL(vq), ξ〉 = 〈FL(vq), ξQ(q)〉.

We then know that JL is constant along solutions of the EL equations. In particular, fixing a
regular value µ ∈ g∗ of the momentum map, XEL

leaves J−1
L (µ) invariant. Moreover, equivariance

of JL implies that the action of Gµ on TQ restricts to a (free and proper) action on J−1
L (µ). It

can be shown that, under a certain regularity condition on the Lagrangian L, we can realize the
orbit space J−1

L (µ)/Gµ as the fiber product TQ/Gµ
(Q/G). It should be noted that the condition

of µ being a regular value is redundant once freeness of the action is assumed.

Definition 2.4. A G-invariant Lagrangian L is called G-regular if for every fixed vq ∈ TQ the
map g → g∗, ξ 7→ JL(vq + ξQ(q)) is a diffeomorphism.

From now on, we will assume that L is G-regular. Making use of the G-regularity, one can then
construct a diffeomorphism Πµ : J−1

L (µ)/Gµ → TQ/Gµ
(Q/G) (see [7], Lemma 1).

Next, fix a connection A in the principal bundle π : Q → Q/G, and let, as before, A be the
associated g-valued 1-form. The 2-form dAµ is easily checked to be projectable to a 2-form Bµ

on Q/Gµ. Define the following function on TQ:

Rµ = L− Aµ,

(although Aµ is a 1-form, in the above definition it is understood to be the function Aµ : TQ→
R; vq 7→ Aµ(q)(vq)). Due to Gµ-invariance, the restriction of Rµ to J−1

L (µ) induces a function on
the quotient J−1

L (µ)/Gµ ∼= TQ/Gµ
(Q/G). Rµ denotes the corresponding function on TQ/Gµ

(Q/G)
and is called the Routhian.

Proposition 1 (Routh reduction). Let L be a hyperregular G-invariant, G-regular Lagrangian
with configuration space Q, and let µ ∈ g∗ denote a regular value of the momentum map JL.
Then, the magnetic Lagrangian system (Q/Gµ → Q/G,Rµ,Bµ), as constructed above, has the
property that every solution of the original Euler-Lagrange equations corresponding to the mo-
mentum value µ projects onto a solution of (Q/Gµ → Q/G,Rµ,Bµ). Conversely, every solution
in Q/Gµ of (Q/Gµ → Q/G,Rµ,Bµ) is the projection of a solution to the Euler-Lagrange equa-
tions for L with momentum µ.

Example. Consider three planar rigid bodies with a common fixed point O, so that each body
is free to rotate about the axis through O, orthogonal to the plane. The configuration space is
S1 × S1 × S1, with coordinates (θ, ϕ, ψ) where θ is the angle which the first body makes with a
fixed direction in the plane, ϕ is the relative angle of the second rigid body w.r.t. the first and
finally ψ denotes the relative angle of the third rigid body w.r.t. the second (see Figure 1).

The potential is supposed to be of the form V (ϕ, ψ) such that we have an S1-invariant Lagrangian:

L =
1

2
I1θ̇

2 +
1

2
I2(θ̇ + ϕ̇)2 +

1

2
I3(θ̇ + ϕ̇+ ψ̇)2 − V (ϕ, ψ),

whose EL equations (in normal form) are:

θ̈ =
1

I1

∂V

∂ϕ
, ϕ̈ = −

(

I1 + I2
I2I1

)

∂V

∂ϕ
+

1

I2

∂V

∂ψ
, ψ̈ = −

(

I2 + I3
I3I2

)

∂V

∂ψ
+

1

I2

∂V

∂ϕ
.
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O

θ

ϕ

ψ

•

Figure 1: Coordinates on S1 × S1 × S1

Fix a regular value µ for the momentum J = (I1 + I2 + I3)θ̇ + (I2 + I3)ϕ̇ + I3ψ̇. Then on the
level set {J = µ} we have θ̇ = (µ− (I2 + I3)ϕ̇+ I3ψ̇)/(I1 + I2 + I3). We work out the Routhian
for two different connections:

1) Consider the mechanical connection AM whose horizontal spaces are orthogonal to the G-
orbits with respect to the metric given by the kinetic energy. It is easy to check that one
has the following connection 1-form: AM = dθ + I2+I3

I1+I2+I3
dϕ + I3

I1+I2+I3
dψ. The Routhian

RµM (ϕ, ϕ̇, ψ, ψ̇) =
(

L− 〈AM , µ〉
)

{J=µ}
satisfies:

RµM ≃
1

2

[

I1 (I2 + I3)

(I1 + I2 + I3)

]

ϕ̇2 +
1

2

[

I3 (I1 + I2)

(I1 + I2 + I3)

]

ψ̇2

+

[

I1I3
(I1 + I2 + I3)

]

ϕ̇ψ̇ − V (ϕ, ψ),

where the symbol ≃ means that we have omitted constant terms. Note that with this choice
of the connection, the Routhian is again of mechanical type.

2) Take now the non-flat connection given by A0 = dθ+cos(ψ)dϕ. The RouthianRµ0 (ϕ, ϕ̇, ψ, ψ̇) =
(

L− 〈A0, µ〉
)

{J=µ}
satisfies:

Rµ0 ≃
1

2

[

I1 (I2 + I3)

(I1 + I2 + I3)

]

ϕ̇2 +
1

2

[

I3 (I1 + I2)

(I1 + I2 + I3)

]

ψ̇2 +

[

I1I3
(I1 + I2 + I3)

]

ϕ̇ψ̇

+
µ (I2 + I3) (1 − cos(ψ))

(I1 + I2 + I3)
ϕ̇+

µI3
(I1 + I2 + I3)

ψ̇ − V (ϕ, ψ).

An easy computation shows that the EL equations for any of RµM or Rµ0 are equivalent to the
EL equations for the variables (ϕ, ψ) of L (note that the EL equations for Rµ0 have a force
term dA0

µ = µ sin(ψ)dϕ∧dψ). Together with the momentum equation, they provide complete
solutions of the original system.
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This example illustrates an important fact about Routh reduction: the choice of the connection
is arbitrary and always leads to the same EL equations.

3 Transformations between magnetic Lagrangian systems

In this section we study transformations between magnetic Lagrangian systems. As described in
the introduction, the main goal is to obtain the Routh reduction procedure as a transformation
between magnetic Lagrangian systems. Throughout this section, we develop Routh reduction as
an example of the general theory on these transformation.

3.1 Pull-back Hamiltonian systems

We first recall some generalities concerning the pull-back of a symplectic structure and investi-
gate the relationship between Hamiltonian vector fields that are connected by such a pull-back
operation.

Consider the situation where we are given two manifolds N,M and a smooth map f : N → M
of constant rank. Assume, in addition, that M is a symplectic manifold with symplectic form
ωM , and that we are given a Hamiltonian function hM on M . Let us denote by XhM

the
corresponding Hamiltonian vector field, which satisfies iXhM

ωM = −dhM . Consider then the
presymplectic form ωN = f∗ωM and the Hamiltonian function hN = f∗hM , induced on N . A
Hamiltonian vector field on N with respect to ωN , corresponding to hN , is determined by the
presymplectic equation

iXωN = −dhN , (3)

and we are interested in those cases where (some of) the integral curves of XhM
can be retrieved

from integral curves of a solution to (3). More precisely, we investigate when XhM
is f -related to

a solution X of (3). Recall that solutions to (3), if they exist, are determined up to elements in
the kernel of ωN , which we denote by TNωN , and that Tf (TNωN ) = [Tf(TN)]ωM ∩ Tf(TN),
where [Tf(TN)]ωM is the kernel of the restriction of ωM to TM|f(N).

First note that any vector field Y on N which is f -related to XhM
, solves (3): for any x ∈ N

and Zx ∈ TxN it follows that

ωN(x)
(

Yx, Zx
)

= ωM (f(x))
(

Tf(Yx), T f(Zx)
)

= −dhM (f(x))
(

Tf(Zx)
)

= −dhN(x)(Zx).

A necessary condition for XhM
to be f -related to a vector field on N is XhM |f(N) ∈ Tf(TN), or

equivalently
〈dhM , [Tf(TN)]

ωM 〉|f(N) = 0. (4)

If X solves (3) and condition (4) holds, the vector Tf(Xx)−XhM
(f(x)) is in Tf(TxN

ωN ) for all
x in the domain of X , i.e. X can be gauged by an element in the kernel of ωN so that it becomes
f -related to XhM

. To show that (4) is also a sufficient condition for the existence of an f -related
solution of (3), we need to show that it implies the existence of a solution (3). For that purpose,
we rely on the presymplectic constraint algorithm developed by M. Gotay, J.M. Nester and G.
Hinds (see [3, 4]).
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The starting point of the presymplectic constraint algorithm is the observation that (3) admits
a solution at a point x ∈ N if the following condition holds: 〈Zx, dhN (x)〉 = 0 for all Z ∈ TNωN .
The set of all these points is assumed to form a (immersed) submanifold of N , i.e.

N2 = {x ∈ N : 〈dhN (x), TxN
ωN 〉 = 0} ,

called the secondary constraint submanifold. The next step then consists in requiring that one
should be able to find a vector field solution to (3) which is tangent to N2. This possibly leads
to new constraints defining a constraint submanifold N3 = {x ∈ N2 : 〈dhN (x), TxN

ωN

2 〉 = 0},
where TNωN

2 = {X ∈ TN|N2
: ωN(X,Y ) = 0 for all Y ∈ TN2}. Proceeding this way one

generates a descending sequence of constraint submanifolds . . . ⊂ Nk ⊂ . . . ⊂ N2 ⊂ N := N1,
where

Nk = {x ∈ Nk−1 : 〈dhN (x), TxN
ωN

k−1〉 = 0}

for k = 2, . . ., with TNωN

k−1 = {X ∈ TN|Nk−1
: ωN (X,Y ) = 0 for all Y ∈ TNk−1}. If this

sequence stabilizes at some finite step K ∈ N, in the sense that NK 6= ∅ and NK+1 = NK , we
say that NK is the final constraint (sub-)manifold. In that case, equation (3) admits solutions
on NK , and we say that the presymplectic equation leads to a consistent dynamics on NK .

Returning to the situation described above, we are now able to prove that (3) admits a consistent
dynamics on N provided the Hamiltonian vector field XhM

is everywhere tangent to f(N). In
fact we have:

Proposition 2. There exists a solution X of (3) which is f -related to XhM
if and only if

XhM |f(N) ∈ Tf(TN).

Proof. It suffices to check the first step of the presymplectic constraint algorithm. Indeed, from
Tf (TNωN ) ⊂ [Tf(TN)]ωM and using equation (4) it follows that for all x ∈ N

〈dhN (x), TxN
ωN 〉 = 〈dhM (f(x)), Txf (TxN

ωN )〉 = 0 ,

proving that N is the final constraint manifold for (3) which therefore admits a solution. Hence,
according to a previous observation, there also exists a solution which is f -related to XhM

.

3.2 Compatible transformations

We now specialize the symplectic framework given above to the case of interest in the study of
magnetic Lagrangian systems, namely fiber products with (pre)symplectic structures of the form
ΩL,B.

Definition 3.1. Let ǫ(1) : P1 → Q1 and ǫ(2) : P2 → Q2 be two fiber bundles. If F : P1 → P2 and
f : Q2 → Q1 are two surjective submersions we say that the pair (F, f) forms a transformation
pair between both bundles if the following equality holds:

f ◦ ǫ(2) ◦ F = ǫ(1),

and all the arrows in Figure 2 represent fiber bundles.

We write dimQi = ni and dimPi = ni + ki for i = 1, 2. Because F and f are submersions, it
follows that n1 + k1 ≥ n2 + k2 and n1 ≤ n2. This way we find the relation k1 ≥ k2 between the
dimensions of the fibers of the bundles ǫ(i) : Pi → Qi. A transformation pair induces a chain
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P1 P2

Q1 Q2

F

ǫ(1)

f

ǫ(2)

Figure 2: Transformation pair

of bundle structures P1 → P2 → Q2 → Q1. Choosing coordinates adapted to these fibrations,
we let (qi) denote coordinates on Q1, (qi, q̄a) coordinates on Q2, (qi, q̄a, p̄α) on P2 and finally
(qi, q̄a, p̄α, pγ) on P1. We have then the following natural sets of coordinates: (qi, vi, q̄a, p̄α, pγ)
on TP1Q1 and (qi, q̄a, vi, v̄a, p̄α) on TP2Q2.

Definition 3.2. Let (F, f) be a transformation pair between ǫ(1) : P1 → Q1 and ǫ(2) : P2 → Q2.
Then:

1. Two points (vqi , pi) ∈ TPi
Qi, i = 1, 2 are (F, f)-compatible if F (p1) = p2 and Tf(vq2) = vq1 .

2. A smooth map ψ : TP1Q1 → TP2Q2 is compatible with the transformation pair (F, f) if for
every point s1 = (vq1 , p1) ∈ TP1Q1, the points s1 and ψ(s1) are (F, f)-compatible.

We simply say that ψ is a compatible transformation or compatible map. Compatibility for a
map ψ is equivalently specified by the following two conditions:

i) τ
(2)
2 ◦ ψ = F ◦ τ

(1)
2 ;

ii) Tf ◦ τ
(2)
1 ◦ ψ = τ

(1)
1 .

The situation is summarized in Figure 3:

TP1Q1 P2

TQ1 TP2Q2

F◦τ
(1)
2

τ
(1)
1

Tf◦τ
(2)
1

τ
(2)
2

ψ

Figure 3: Commutative diagram for a compatible map ψ

We use coordinates adapted to the fibrations as introduced before to describe both a point and its
image by ψ. It is then readily checked that compatible maps convey to the following coordinate
expression:

ψ(qi, vi, q̄a, p̄α, pγ) = (qi, q̄a, vi, v̄a = ψa(qi, vi, q̄a, p̄α, pγ), p̄α).

Note that the rank of a transformation ψ is determined by the rank of the matrix (∂ψa/∂pγ)a,γ
in the following way: rankψ = dimP2 + dimQ1 + rank(∂ψa/∂pγ)a,γ . In particular, for ψ to
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be a diffeomorphism the dimension of the fibers corresponding to f and F must the same and
det(∂ψa/∂pγ)a,γ 6= 0.

The compatibility of points gives naturally a notion of compatibility of vectors by lifting the
conditions to the tangent spaces:

Definition 3.3. Let (F, f) be a transformation pair between ǫ(1) : P1 → Q1 and ǫ(2) : P2 → Q2,
and let s1 = (vq1 , p1) ∈ TP1Q1 and s2 = (vq2 , p2) ∈ TP2Q2 be arbitrary points. Given Ys1 and
Xs2 tangent vectors at s1 and s2 respectively, we say that Ys1 and Xs2 are (F, f)-compatible if
the following two conditions are satisfied:

1. T
(

F ◦ τ
(1)
2

)

(Ys1) = Tτ
(2)
2 (Xs2);

2. Tτ
(1)
1 (Ys1) = T

(

Tf ◦ τ
(2)
1

)

(Xs2).

Note that, in particular, s1 and s2 need to be compatible points (see Figure 4).

TP1Q1 P2

TQ1 TP2Q2

T (TP1Q1) TP2

T (TQ1) T (TP2Q2)

F◦τ
(1)
2

τ
(1)
1

Tf◦τ
(2)
1

τ
(2)
2

T
(

F◦τ
(1)
2

)

Tτ
(1)
1

T
(

Tf◦τ
(2)
1

)

Tτ
(2)
2

Figure 4: Compatible points and vectors

Consider an arbitrary vector Ys1 tangent to TP1Q1 at the point s1. Its coordinate expression is

Ys1 = Y is1
∂

∂qi
+ Y as1

∂

∂q̄a
+ Y αs1

∂

∂p̄α
+ Y γs1

∂

∂pγ
+ Ŷ is1

∂

∂vi
, (5)

and reading the local expressions of the previous definition, a compatible tangent vector Xs2 at
the compatible point s2 assumes the following form:

Xs2 = Y is1
∂

∂qi
+ Y as1

∂

∂q̄a
+ Y αs1

∂

∂p̄α
+ Ŷ is1

∂

∂vi
+ X̂a

s2

∂

∂v̄a
. (6)

Given a compatible transformation ψ between ǫ(1) : P1 → Q1 and ǫ(2) : P2 → Q2, it is clear that
Ys1 and Xs2 = Tψ(Ys1) are compatible vectors for any Ys1 ∈ TP1Q1. In this particular case,
from the coordinate expression of a compatible map, we find:

X̂a
s2 = Y is1

∂ψa

∂qi
+ Ŷ is1

∂ψa

∂vi
+ Y as1

∂ψa

∂q̄a
+ Y αs1

∂ψa

∂p̄α
+ Y γs1

∂ψa

∂pγ
.

Example (Routh reduction). Consider a hyperregular standard Lagrangian system (Q →
Q,L,B = 0) amenable to Routh reduction, i.e. there is a left G-action and L is G-invariant and
G-regular. Consider the (trivial) bundles ǫ(2) = idQ : P2 = Q → Q2 = Q and ǫ(1) = π : P1 =
Q → Q1 = Q/G (Figure 5). The maps F = idQ : P1 → P2 and f = π : Q2 = Q → Q1 = Q/G
are a transformation pair between ǫ(1) and ǫ(2). Then TP1Q1 = TQ(Q/G), TP2Q2 = TQ and it
follows:

10



• points (v[q]G , q) and vq in TQ(Q/G) and TQ respectively, are compatible if v[q]G = Tπ(vq);

• a map ψ : TQ(Q/G) → TQ is compatible if it sends (v[q]G , q) to a tangent vector in TQ
projectable to v[q]G , i.e. the map is determined up to a gauge in g;

• tangent vectors X ∈ T (TQ) and Y = (Y Q, Y T (Q/G)) ∈ T (TQ(Q/G)) ∼= TQ×QT (T (Q/G))
are compatible if TτQ(X) = Y Q and T (Tπ)(X) = Y T (Q/G).

Q Q

Q/G Q

idQ

π

Figure 5: Routh reduction scheme in TQ

A family of compatible transformations. Assume we are given two fiber bundles ǫ(i) : Pi →
Qi, i = 1, 2, and a magnetic Lagrangian system (ǫ(2), L2,B2), together with a transformation pair
(F, f) between ǫ(1) : P1 → Q1 and ǫ(2) : P2 → Q2. We can then construct a family of compatible
transformations ψL2,β : TP1Q1 → TP2Q2 between these spaces. As the notation suggests, this
family depends on the Lagrangian L2 and an arbitrary map β : P1 → V ∗f , where V ∗f is the
dual of the bundle V f of tangent vectors vertical to the fibration f .

First we introduce the notion of f -regularity of the Lagrangian L2. Consider the map αL2 :

TP2Q2 → V ∗f which is defined as he composition of π
(2)
1 ◦ FL2 : TP2Q2 → T ∗Q2 with the

projection of T ∗Q2 onto V ∗f .

Definition 3.4. The Lagrangian L2 is f -regular if for any given s2 = (vq2 , p2) ∈ TP2Q2 the map

αs2L2
: Vq2f → V ∗

q2f ;wq2 7→ αL2(vq2 + wq2 , p2)

is a diffeomorphism.

It is easily verified in coordinates that this condition is equivalent to the non-vanishing of the
Hessian of L2 with respect to the velocities, i.e.

det

(

∂2L2

∂v̄a∂v̄b

)

6= 0.

For f -regular Lagrangians, we are now ready to introduce a family of compatible maps ψL2,β :
TP1Q1 → TP2Q2.

I) Consider the map αL2 : TP2Q2 → V ∗f , defined as above;

II) Fix a map β : P1 → V ∗f such that f ◦ pr|V ∗f ◦ β = ǫ(1), where pr : T ∗Q2 → Q2 denotes
the standard projection on the cotangent bundle T ∗Q2 (see also Figure 6);

11



P1 V ∗f ⊂ T ∗Q2

Q1 Q2

β

ǫ(1)

f

pr

Figure 6: Commutative diagram for the map β

III) Let s1 = (vq1 , p1) be an arbitrary point in TP1Q1 and let s2 = (vq2 , p2) ∈ TP2Q2 be a
compatible point (such a point always exists). Due to the f -regularity of L2, there exists a
unique tangent vector wq2 ∈ Vq2f that satisfies αs2L2

(wq2 ) = β(p1), or alternatively

π
(2)
1

(

FL2(vq2 + wq2 , p2)
)

|V f
= β(p1).

We take the point (vq2 +wq2 , p2) as the image of s1 = (vq1 , p1) under ψL2,β . The fact that
L2 is f -regular implies that the construction is independent of the choice of s2.

By construction, the map ψL2,β is compatible and it satisfies αL2◦ψL2,β ≡ β◦τ
(1)
2 . In coordinates,

writing β = βadq̄
a, this relation takes the form:

∂L2

∂v̄a

(

qi, q̄a, p̄α, vi, v̄a = ψa(qi, q̄a, p̄α, pγ , vi)

)

≡ βa(qi, q̄a, p̄α, pγ).

Proposition 3. ψL2,β is uniquely characterized by the following two conditions:

1. It is a compatible transformation;

2. It satisfies αL2 ◦ ψL2,β ≡ β ◦ τ
(1)
2 .

Proof. Take s1 ∈ TQ1P1 and let ψ be a compatible map that satisfies the relation above. This
condition reads:

∂L2

∂v̄a
(ψ(s1)) = βa

(

τ
(1)
2 (s1)

)

.

If we use regularity of αL2 and apply the inverse function theorem, it follows that ψ is unique.

Example (Routh reduction). Recall the setup for a standard Lagrangian system on Q
amenable to Routh reduction: ǫ(1) = π : P1 = Q → Q1 = Q/G, ǫ(2) = idQ : P2 = Q → Q2 = Q,
F = idQ, f = π : Q → Q/G and L2 = L, B2 = 0. The bundle V f is the bundle of symmetry
vectors {ξQ2 |ξ ∈ g} and σ∗ ◦ αL = JL. The map β : Q → V ∗f ∼= Q × g∗ is equivalent to a
g∗-valued map on Q. Although we are running ahead of things, in the case of Routh reduction
the map β is determined from a fixed value µ ∈ g∗. Indeed β : Q→ V ∗π is characterized in the
following way:

〈β(q), ξQ(q)〉 = 〈µ, ξ〉, for all ξ ∈ g.

Thus, the second equation in Proposition 3 coincides with the momentum equation JL2 = µ.
From the definition of the map αL, the image of (v[q]G , q) by the map ψL,β is the element
(vq + ηQ) ∈ TQ with η is determined by the equality:

〈FL(vq + ηQ), ξQ(q)〉 = 〈β(q), ξQ(q)〉 = 〈µ, ξ〉,
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for all ξ ∈ g. From the definition of JL it follows 〈FL(vq + ηQ), ξQ(q)〉 = 〈JL(vq + ηQ), ξ〉 and
hence ψL,β = ıµ ◦ Π−1

µ .

Pull-back of a magnetic Lagrangian system under ψL2,β. In the next two paragraphs we
study the pull-back under ψL2,β of the (pre)symplectic system ΩL2,B2 with energy (Hamiltonian)
EL2 . In the first paragraph we show that the pull-back system is associated to a new magnetic
Lagrangian system on P1 → Q1. In the second paragraph we study conditions on the map β
such that the EL equations of the pull-back system are related to the EL equations of the initial
magnetic Lagrangian system.

In order to define in an intrinsic way a Lagrangian on P1 → Q1 whose associated 2-form equals
ψ∗
L2,β

ΩL2,B2 , we choose a connection A on the bundle f : Q2 → Q1. Recall from the introduction
that A is a V f -valued 1-form on Q2, satisfying A(vq2 ) = vq2 , for all vq2 ∈ V f . Consider now the
associated V f -valued 1-form AP1 on P1 defined from AP1(v) = A

(

T (ǫ(2) ◦ F )(v)
)

for v ∈ TP1 .
Contraction of β and AP1 gives rise to the following 1-form on P1:

〈β,AP1〉(p1) = 〈β(p1),AP1(p1)〉 ∈ T ∗
p1P1 .

If we denote the TQ2-component of the transformation ψL2,β : TP1Q1 → TP2Q2 by ψTQ2

L2,β
(i.e.

ψTQ2

L2,β
= τ

(2)
1 (ψL2,β)), we have the following result:

Theorem 3.5. Let (F, f) be a transformation pair between ǫ(1) : P1 → Q1 and ǫ(2) : P2 → Q2

and let (ǫ(2), L2,B2) be a magnetic Lagrangian systems such that L2 is f -regular. Fix a connection
A on the bundle f : Q2 → Q1 and a map β : P1 → V ∗f , and let ψL2,β : TP1Q1 → TP2Q2 be the
(F, f)-compatible transformation constructed above. Consider the magnetic Lagrangian system
(ǫ(1), L1,B1) defined by

i) L1(vq1 , p1) =
(

ψ∗
L2,β

L2

)

(vq1 , p1) − 〈β(p1),A(ψTQ2

L2,β
(vq1 , p1))〉;

ii) B1 = F ∗B2 + d (〈β,AP1〉).

Then ψL2,β satisfies:

1. ψ∗
L2,β

ΩL2,B2 = ΩL1,B1 ;

2. ψ∗
L2,β

EL2 = EL1 .

Proof. The proof is straightforward generalization of the result in [7].

Example (Routh reduction). The magnetic Lagrangian system on π : Q → Q/G has the
following properties:

• L1 = (iµ ◦ Π−1
µ )∗L−Aµ, i.e. L1(Tπ(vq), q) = L(vq) − 〈µ,A(vq)〉 for vq ∈ J−1

L (µ) arbitrary,

• B1 = dAµ.
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The tangency condition. Under some restrictive conditions (to be discussed below) the pre-
vious map can be proved to be a diffeomorphism. However, in general, the magnetic Lagrangian
system on TP1Q1 is not regular even if the original system on ǫ(2) : P2 → Q2 was. Theorem 3.5
states that the two Lagrangian systems are related, but this does not guarantee that the solution
curves to the (pre)-symplectic equations are related.

Here we use the results from Section 3.1 to get a sufficient condition for solutions to the EL
equations of (ǫ(1) : P1 → Q1, L1,B1) to be related to those of a regular system (ǫ(2) : P2 →
Q2, L2,B2). From Section 3.1 is it necessary and sufficient that XEL2

is contained in the image
of TψL2,β. The next proposition provides information on the image of TψL2,β .

Proposition 4. Let Xs2 denote an arbitrary tangent vector to M = TP2Q2 at s2 = (p2, vq2 ) =
ψL2,β(s1). Then Xs2 = TψL2,β(Ys1) for some Ys1 tangent to N = TP1Q1 at s1 = (p1, vq1) iff the
following two conditions are satisfied:

1. Xs2 and Ys1 are compatible;

2.

Xs2

(

∂L2

∂v̄a

)

=
(

Tτ
(1)
2 (Ys1)

)

(βa).

Proof. We first show that the two conditions hold if Xs2 = TψL2,β(Ys1). Since ψL2,β is a
compatible map, the pair Xs2 , Ys1 is compatible. Deriving the left hand side of the equality

αL2 ◦ ψL2,β = β ◦ τ
(1)
2 , becomes TαL2 ◦ TψL2,β(Ys1) = TαL2(Xs2). The right hand side equals

Tβ
(

Tτ
(1)
2 (Ys1 )

)

. In components, we have T (αL2)a(Xs2) = Tβa(Tτ
(1)
2 Ys1) which is the second

condition.

For the converse statement, let Xs2 , Ys1 denote a pair of vectors satisfying 1. and 2. Note that
the pair TψL2,β(Ys1 ), Ys1 also satisfies 1. and 2., and that the proof is concluded if we can show
uniqueness, i.e. two pairs X̄s2 , Ys1 and X̄ ′

s2 , Ys1 satisfying conditions 1. and 2., will necessarily
be equal: X̄s2 = X̄ ′

s2 .

From the second condition (and using the coordinate expressions for compatible vectors given
before in Equation (6)) it follows

(X̄s2 − X̄ ′
s2)

(

∂L2

∂v̄a

)

= 0, or ( ˆ̄Xb
s2 −

ˆ̄X
′b
s2)

∂2L2

∂v̄a∂v̄b
= 0.

Regularity of αL2 implies uniqueness: X̄s2 = X̄ ′
s2 .

Denoting as before βa the component of β along dq̄a, coordinate expressions for αL2 and β are:

αL2 : (qi, q̄a, vi, v̄a, p̄α) 7→

(

∂L2

∂v̄a

)

, β : (qi, q̄a, p̄α, pγ) 7→ βa.

Taking tangent vectors points s2 = ψL2,β(s1), and using coordinate expressions for Xs2 and Ys1
as in Equation (6), one finds that the equation (TαL2)b(Xs2) = Tβb

(

Tτ
(1)
2 Ys1

)

reads:

Y is1
∂2L2

∂qi∂v̄b
+ Y as1

∂2L2

∂q̄a∂v̄b
+ Y αs1

∂2L2

∂p̄α∂v̄b
+ Ŷ is1

∂2L2

∂vi∂v̄b
+ X̂a

s1

∂2L2

∂v̄a∂v̄b

= Y is1
∂βb
∂qi

+ Y as1
∂βb
∂q̄a

+ Y αs1
∂βb
∂p̄α

+ Y γs1
∂βb
∂pγ

. (7)
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Example (Routh reduction). The tangency condition holds if β is defined by a constant cho-
sen momentum µ. Given any vectorXs2=vq , then a compatible vector Ys1=(v[q]G ,q)

in T (TQ(Q/G))
is completely determined from Xvq . Equation 7 can be rewritten as:

Xvq

(

∂L2

∂v̄a

)

=
(

TτQ(Xvq )
)

(βa), with τQ : TQ→ Q.

If Xvq = XEL
(vq) the previous equation will be satisfied if β is defined from a chosen fixed

momentum µ. The previous equation then becomes XEL
(JL−µ) = 0. It is well-known that this

is satisfied: an invariant Hamiltonian vector field is tangent to the level set of a momentum map.

The diffeomorphic case. The most interesting case of a compatible transformation ψL,β
arises precisely when this map is a diffeomorphism. In this case one has an induced system
which is symplectomorphic to the original one, and hence its dynamics faithfully represent that
of the original system. We prove here a useful condition for this to happen.

Assume that the dimensions of TPi
Qi agree, i.e. with the notations of Section 3 the following

equality holds: 2n1+k1 = 2n2+k2. Then we have n1+k1−n2−k2 = n2−n1, i.e. the dimensions
of the fibers of F and f coincide, a necessary condition for ψL,β to be a diffeomorphism. Note
that in this case both the indices a and γ run from 1 to n2 − n1.

Proposition 5. In the situation above, assume the following regularity condition holds: the map
β|F−1(p2) : F−1(p2) → V ∗

q2f is a diffeomorphism for each p2 ∈ P2, with ǫ
(2)(p2) = q2. Then ψL,β

is a diffeomorphism.

Proof. The fiber submanifold F−1(p2) has coordinates pγ , and in particular

rank(∂βa/∂p
γ)a,γ = n2 − n1.

The rank of ψL,β is maximal iff rank(∂ψa/∂pγ)a,γ is maximal, where ψa are the components of
ψ, implicitly defined as:

∂L

∂v̄b
(q, q̄, q̇, ψa(q, q̇, q̄, p̄, p), p̄) = βb

(

q, q̄, p̄, p
)

.

By f -regularity of L it follows rank(∂ψa/∂pγ)a,γ = rank(∂βa/∂p
γ)a,γ . Since ψL,β is a bijection

(this is easily checked using the condition on β) and has constant maximal rank, the result
holds.

Moreover, from the proof it is clear that the previous proposition fully characterizes the case
where ψL,β is a diffeomorphisms, i.e., the condition on β in Proposition 5 is also necessary. The
following theorem guarantees the regularity of the induced systems under the transformation
ψL,β in this situation.

Theorem 3.6. Assume ψL,β is a diffeomorphism. Then the induced magnetic Lagrangian system
on ǫ(1) : P1 → Q1 is hyperregular.

Proof. It is clear that FL1 is a global diffeomorphism, because ψL,β is a diffeomorphism. On the

other hand, since ψL,β is a symplectomorphism, it follows that the form
(

π
(1)
1

)∗
ωQ1 +

(

π
(1)
2

)∗
B1

is symplectic.
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4 Fiberwise Reducible magnetic Lagrangian systems

This section is devoted to a particular kind of magnetic Lagrangian systems where the dynamics
is easily reducible. These systems posses symmetry along the fibers of ǫ : P → Q which, roughly
speaking, allows for a reduction of the base space space P of TPQ while leaving the tangent part
TQ invariant.

Example (Routh reduction). In Section 3 we have shown that a general Lagrangian system,
amenable to Routh reduction, can be transformed into a magnetic Lagrangian system (Q →
Q/G, (iµ ◦ Π−1

µ )∗L − Aµ, dAµ) in such a way that the solution to the EL equations are mapped
into solution of the original EL equations with fixed momentum µ. There is still symmetry left in
the transformed system: the fibers of Q→ Q/G are equal to G and we will show below that the
transformed magnetic Lagrangian system is reducible under the fiberwise action of the isotropy
subgroup Gµ.

Preliminary results and definitions. Let ǫ : P → Q be a bundle and ΦP denotes a G-action
on P such that ǫ ◦ ΦP = ǫ. Then ΦP naturally induces a lifted action on TPQ:

ΦTPQ
g (vq, p) = (vq,Φ

P
g (p)) = (vq, gp), (vq , p) ∈ TPQ, g ∈ G.

Definition 4.1. A magnetic Lagrangian system (ǫ : P → Q,L,B) together with a G-action ΦP

on P is fiberwise-reducible if the following conditions hold:

1. The action of G on P is tangent to the fibers, i.e. ǫ(ΦPg (p)) = ǫ(p);

2. L is G-invariant with respect to the lift of ΦP to TPQ: L(vq,Φ
P
g (p)) = L(vq, p);

3. The 2-form B on P is reducible to P/G, i.e. B is G-invariant and satisfies ıξQB = 0 for all
ξ ∈ g.

We write B̄ for the projection of B onto P/G and L̄ for the projection of L onto TP/GQ. The
quotient manifold P/G can be naturally fibered over Q, the fibration given by ǭ : [p] 7→ ǫ(p).
Since Φ is assumed to be free, the fibration ǭ : P/G → Q is a principal G-bundle (that is, local
triviality holds; see [16]). Since B projects to B̄, B̄ is closed.

Definition 4.2. Let (ǫ : P → Q,L,B, G) be a fiberwise-reducible magnetic Lagrangian system.
We call (ǭ : P/G→ Q, L̄, B̄) the (associated) reduced magnetic Lagrangian system.

We use the following notations, in agreement with the notations used before:

1. τG : TPQ→ TP/GQ is the projection that maps (vq, p) ∈ TPQ onto (vq, [p]) ∈ TP/GQ.

2. pG : T ∗
PQ→ T ∗

P/GQ is the projection that maps (αq, p) ∈ T ∗
PQ onto (αq, [p]) ∈ T ∗

P/GQ.

3. π̄1 : T ∗
P/GQ→ T ∗Q is the projection that maps (αq, [p]) ∈ T ∗

P/GQ onto αq ∈ T ∗Q.

4. π̄2 : T ∗
P/GQ→ P/G is the projection that maps (αq, [p]) ∈ T ∗

PQ onto [p] ∈ P/G.

We are interested in reducing the dynamics in a fiberwise-reducible Lagrangian system to the
associated reduced magnetic Lagrangian system (ǭ : P/G→ Q, L̄, B̄). For that purpose, we need
the following two lemmas:
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Lemma 4.3. Let (ǫ : P → Q,L,B, G) be a fiberwise-reducible Lagrangian system and consider
the reduced magnetic Lagrangian system (ǭ : P/G→ Q, L̄, B̄). Then pG ◦ FL = FL̄ ◦ τG, i.e., the
diagram in Figure 7 commutes.

TPQ T ∗
PQ

TP/GQ T ∗
P/GQ

FL

τG

FL̄

pG

Figure 7: Lemma 4.3

Proof. This result is immediate.

Lemma 4.4. The map τG between the presymplectic manifolds (TPQ,Ω
L,B) and (TP/GQ, Ω̄

L̄,B̄)

satisfies τ∗GΩ̄L̄,B̄ = ΩL,B and τ∗GEL̄ = EL.

Proof. The first statement follows from diagram chasing:

τ∗GFL̄
∗(π̄∗

1ωQ + π̄∗
2B̄) = FL∗p∗G(π̄∗

1ωQ + π̄∗
2B̄) = FL∗(π∗

1ωQ + π∗
2B).

The second part is easily checked in coordinates:

τ∗GEL̄ = τ∗G

(

∂L̄

∂vi
vi − L̄

)

=
∂L

∂vi
vi − L = EL.

The tangency condition is trivially satisfied since the map TPQ→ TP/GQ is a submersion. The
next proposition summarizes the reduction of these fiberwise reducible systems.

Proposition 6. Consider a fiberwise reducible magnetic system (ǫ : P → Q,L,B, G). The
associated reduced magnetic Lagrangian system (ǭ : P/G→ Q, L̄, B̄) is such that any solution to
the EL equation is the projection of a solution to the EL equations of the reducible system.

Example (Routh reduction). Clearly the Lagrangian (iµ ◦ Π−1
µ )∗L − Aµ on TQ(Q/G) and

the magnetic force term dAµ on Q of the transformed Lagrangian system are Gµ invariant and
fiberwise reducible to a magnetic Lagrangian system on Q/Gµ → Q. The reduced Lagrangian
and magnetic 2-form correspond to Rµ and Bµ from Proposition 1.

Throughout the previous sections, we have used the specific case of a standard Lagrangian system
amenable to Routh reduction to demonstrate and develop the general theory on transformations
between magnetic Lagrangian systems. In this section we conclude the main result of this paper:
we summarize our statement that Routh reduction itself can be cast into the framework of the
compatible transformations and we also consider the slightly more general framework of Routh
reduction for magnetic Lagrangian systems (see [10]). In both cases, Routh’s reduction proce-
dure for a ‘G-invariant’ magnetic Lagrangian system (ǫ : P → Q,L,B) is realized as the result
of two steps:
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Step 1: We construct an equivalent magnetic Lagrangian (ǫµ : P → Q/G,Lµ,Bµ) system by
means of a compatible transformation ψL,β for a suitable β;

Step 2: We check that (ǫµ : P → Q/G,Lµ,Bµ) is fiberwise reducible.

For a standard Lagrangian system (Q → Q,L,B = 0) amenable to Routh reduction, the proce-
dure was demonstrated throughout the previous section.

Reduction for invariant magnetic Lagrangian systems. Let G act on P → Q by bundle
automorphisms, i.e. there’s a G-action on both P and Q such that ǫ ◦ ΦPg = ΦQg ◦ ǫ. The

projections of the principal bundles are denoted by πP : P → P/G and πQ : Q → Q/G. This
action naturally lifts to an action ΦTPQ on TPQ in the following way:

ΦTPQ
g (vq, p) := (TΦQg (vq),Φ

P
g (p)).

Definition 4.5. A magnetic Lagrangian system (ǫ : P → Q,L,B) is G-invariant if B is invariant
w.r.t. ΦP and L is invariant w.r.t. ΦTPQ.

In this case, ΦTPQ is symplectic w.r.t. ΩL,B (recall the notations from Section 2). In order to
obtain a momentum map for this action, we introduce the notion of Bg-potential.

Definition 4.6. Given an invariant closed 2-form B on P . Then a g∗-valued function δ on P is
a Bg-potential if iξP B = d〈δ, ξ〉 for any ξ ∈ g.

From now on and to ease notation, given a g∗-valued function f , fξ for any ξ ∈ g will be a shortcut
for 〈f, ξ〉. For instance, the defining property of a Bg-potential δ ∈ C∞(P, g∗) is iξP B = dδξ for
any ξ ∈ g. If P is connected, we have

d
[

(ΦPg )∗δξ
]

= (ΦPg )∗dδξ = (ΦPg )∗(iξP B) = i(ΦP
g )∗ξP (ΦPg )∗B

= i(ΦP
g )∗ξP B = i(Ad

g−1ξ)P B = dδ(Ad
g−1ξ).

From d
(

(ΦPg )∗δξ − δAdgξ
)

= 0, it follows that the map σδ(g) = δ ◦ ΦPg −Ad∗g−1 · δ is a g∗-valued

1-cocycle on G. (This definition is independent of the point p ∈ P because of connectedness). A
momentum map JL,δ for ΦTPQ is given by:

〈JL,δ(vq , p), ξ〉 = 〈FL(vq, p), (ξQ(q), p)〉 − δξ(p).

This momentum map has non-equivariant cocycle −σδ. We consider the affine action of G on
g∗ that makes JL,δ equivariant (see for instance [1]), and let Gµ denote the isotropy group of an
element µ ∈ g∗ w.r.t. this action. We will now prove that, under some regularity conditions, the
level set of this momentum map may be identified with the subbundle TP (Q/G) ⊂ TPQ, and
this identification will eventually allow us to define a suitable transformation scheme to describe
Routh reduction on TPQ.

Definition 4.7. The Lagrangian L of a G-invariant magnetic Lagrangian system is called G-
regular if the map JL,δ|(vq,p) : g → g∗; ξ 7→ JL,δ(vq + ξQ(q), p) is a diffeomorphism for all

(vq, p) ∈ TPQ.

Similar to the standard case, we consider the map

Πδ,µ : J−1
L,δ(µ) → TP (Q/G); (vq, p) 7→ (TπQ(vq), p).
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Lemma 4.8. Πδ,µ is a diffeomorphism if the Lagrangian is G-regular.

Proof. We define an inverse map ∆δ,µ for Πδ,µ. Choose an element (v[q]G , p) in TP (Q/G), and
take a point (vq, p) ∈ TPQ such that TπQ(vq) = v[q]G . Using G-regularity of L, there exists a
unique ξ in g such that JL,δ(vq + ξQ(q), p) = µ. Set ∆δ,µ(v[q]G , p) = (vq + ξQ(q), p). It remains
to check that the construction is independent of the chosen point (vq, p) ∈ TPQ, but this is
immediate.

Consider now theGµ-action (on the second factor) on TP (Q/G), denoted by ΨP
g , i.e. ΨP

g (v[q]G , p) =

(v[q]G ,Φ
P
g (p)) (this makes sense since P/Gµ fibers over Q/G). We know that Gµ acts on J−1

L,δ(µ),
and it follows, for g ∈ Gµ,

Πδ,µ(TΦTPQ
g · (vq , p)) = Πδ,µ(TΦTQg (vq),Φ

P
g (p)) = (TπQ(TΦTQg (vq)),Φ

P
g (p))

= (T (πQ ◦ ΦQg )(vq),Φ
P
g (p)) = (v[q]G ,Φ

P
g (p))

= ΨP
g · Πδ,µ(vq, p),

i.e. Πδ,µ(g · (vq, p)) = g · Πδ,µ(vq, p). This implies equivariance for the inverse map ∆δ,µ.

The compatible transformation. Analogous as the standard case, we consider the following
transformation scheme: P1 = P2 = P , Q1 = Q/G, Q2 = Q and transformation the pair
(F = idP , f = πQ = π : Q → Q/G). We have TP1Q1 = TP (Q/G) and TP2Q2 = TPQ, and
π-regularity of L is equivalent to G-regularity of L.

P P

Q/G Q

idP

π

Figure 8: Transformation scheme for TPQ

We use the notations used in the compatible maps: we let coordinates on Q/G be denoted (qi),
adapted coordinates on Q are then (qi, q̄a) and finally (qi, q̄a, p̄α) represent coordinates on P (in
particular, there are no components in pγ).

The components of the infinitesimal generator of symmetries σ : Q× g → TQ of ΦQ are denoted
by σab , i.e. (q = (qi, q̄a), ξ = ξbe

b) 7→ σab (qi, q̄a)ξb, with eb a basis for g (and eb denote the dual
basis vectors). The action being free, σab is invertible, Σab := (σ−1)ab .

Define β : P → V ∗π in the following way:

〈β(p), ξQ(q)〉 = 〈µ, ξ〉 + 〈δ(p), ξ〉.

In local coordinates, the map ψL,β takes the form:

ψL,β(qi, q̄a, vi, p̄α) = (qi, q̄a, vi, v̄a, p̄α),
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with v̄α implicitly determined from

∂L

∂v̄α
(qi, q̄a, vi, v̄a, p̄α) = βa = Σbaµb + Σbaδb,

which is equivalent to the momentum equation and ψL,β equals ıµ ◦ Π−1
δ,µ.

Verifying the tangency condition. Because the momentum map is conserved along solution
to the EL equations, the tangency condition from Proposition 4 is fulfilled for any tangent vector
that solves the (pre)-symplectic equation for the invariant Lagrangian system on P → Q at a
point on the level set of the momentum map. Here we will check Equation (7) for an arbitrary
function β. More precisely, we study the tangency condition for a tangent vector Xs to TPQ in
the case of a compatible transformation map ψL,β with β arbitrary and where Xs=(vq ,p) solves

the EL equation iXs
ΩL,B = −dEL.

Because of the SODE nature EL equation, the tangent vector Xs to TPQ is of the form:

Xs = vi
∂

∂qi
+ v̄a

∂

∂q̄a
+ ṗα

∂

∂p̄α
+ q̈i

∂

∂vi
+ q̈a

∂

∂v̄a
,

where (q̈, ṗα) are implicitly determined from the Euler Lagrange equations. A tangent vector
Ys̄=(Tπ(vq),p) to TP (Q/G) compatible to Xs completely determined by this condition and is of
the form

Y = vi
∂

∂qi
+ v̄a

∂

∂q̄a
+ ṗα

∂

∂p̄α
+ q̈i

∂

∂vi
.

From Proposition 4, Xs is in the image of TψL,β if

Xs

(

∂L

∂v̄a

)

= Ys̄(βa).

Since β is a function on P , the right hand side can be written (with a slight abuse of notation)
as Xs(βa), and the tangency condition becomes

Xs

(

∂L

∂v̄a
− βa

)

= 0.

For a G-invariant Lagrangian, only βa = Σbaµb+Σbaδb will provide a transformation that satisfies
the tangency conditions.

The reduction step. Fix a principal connection A on the bundle π : Q → Q/G whose
corresponding connection 1-form is denoted A. We apply the construction of Theorem 3.5 to
induce the following magnetic Lagrangian system on TP (Q/G):

Lµ = (ıµ ◦ Π−1
δ,µ)∗L− 〈µ+ δ,AP ((ıµ ◦ Π−1

δ,µ)TQ)〉;

Bµ = B + d〈µ+ δ,AP 〉.

This new magnetic Lagrangian system (P → Q/G,Lµ,Bµ) is Gµ-fiberwise reducible because:

• Π−1
δ,µ is equivariant, L is invariant, and the term involving AP is Gµ-invariant.

• Bµ is Gµ invariant and satisfies ıξP Bµ = 0 for all ξ ∈ gµ.
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The last assertion can be checked using Cartan’s formula and the fact that the infinitesimal 2-
cocycle corresponding to σδ equals Σδ(ξ, ζ) = −〈Teσδ(ξ), ζ〉 = −ξP (δζ(p)) − δ[ξ,ζ](p). A detailed
proof may be found in [10, 12].

We conclude with a diagram (Figure 9) that summarizes the equivalence of Routh reduction with
the procedure described above: a transformation ψL,β followed by a fiberwise reduction. The
presymplectic structures on J−1

L,δ(µ) and TP (Q/G) (the former given by ı∗µΩL,B and latter given

by Theorem 3.5) are related by ∆µ,δ. Finally, ∆µ,δ drops to a symplectomorphism ∆̄µ,δ on the
quotient.

J−1
L,δ(µ)/Gµ J−1

L,δ(µ) TPQ

TP/Gµ
(Q/G) TP (Q/G)

∆µ,δ∆̄µ,δ

ıµ

ΨL,β

Figure 9: Routh reduction scheme

5 The Hamiltonian picture

We end with a brief description of the Hamiltonian analogue of the transformations studied in
the previous section. A full treatment of magnetic Hamiltonian systems as the Hamiltonian
counterpart to magnetic Lagrangian systems is not the aim of this section, and will be addressed
elsewhere. Accordingly we will only provide here the basic definition and properties.

Definition 5.1. A magnetic Hamiltonian system is a triple (ǫ : P → Q,H,B) where ǫ : P → Q
is a fiber bundle, H is a smooth function on the fiber product T ∗

PQ and B is a closed 2-form on
P .

There’s a natural presymplectic form Ω defined on T ∗
PQ, given by Ω := π∗

1ωQ + π∗
2B. Given a

magnetic Hamiltonian system, the dynamics associated to a magnetic Hamiltonian system are
solutions to the Hamilton’s equations w.r.t. the (pre)symplectic structure Ω and the Hamiltonian
function H . This definition generalizes the standard definition of a Hamiltonian system on T ∗Q
when considering P = Q.

Transformations We will define a class of transformations ψA,β : T ∗
P1
Q1 → T ∗

P2
Q2 analogous

to the class ψL,β. Consider a transformation pair (F, f) for the bundles ǫ(1) : P1 → Q1 and
ǫ(2) : P2 → Q2 inducing adapted coordinates (qi, q̄a, p̄α) on P2 and (qi, q̄a, p̄α, pγ) on P1 as in
Section 3. Corresponding coordinates in T ∗

P1
Q1 and T ∗

P2
Q2 are denoted (qi, αi, q̄a, p̄α, pγ) and

(qi, q̄a, αi, ᾱa, p̄α) respectively.

To determine the analogue of the transformation ψL2,β one begins with the following observation.
The coordinate expression for the Lagrangian in Theorem 3.5 induced by a transformation ψL2,β

is
L1(q, q̇, q̄, p̄, p) = ψ∗

L2,βL2(q, q̄, q̇, ˙̄q, p̄) − βa(q, q̄, p̄, p)
(

ψaL2,β(q, q̄, q̇, p̄, p) + Γai (q, q̄)q̇i
)

,
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where Γai are the connection coefficients. A computation shows that the momenta α = ∂L2/∂q̇
transform under ψL2,β as α 7→ α+ 〈β,A〉. More precisely, using the definition of ψL2,β one finds:

ψ∗
L2,β

∂L2

∂ ˙̄q
a =βa,

ψ∗
L2,β

∂L2

∂q̇i
=
∂L1

∂q̇i
−
(

ψ∗
L2,β

∂L2

∂ ˙̄q
a

)∂ψa

∂q̇i
+ βa

(∂ψa

∂q̇i
+ Γai

)

=
∂L1

∂q̇i
− βaΓai .

Having the transformation law for the momenta, which depends on the chosen connection A
and on the map β, one can naturally define a transformation ψA,β for a magnetic Hamiltonian
systems on P2 → Q2 as the transformation which satisfies the aforementioned transformation
law for the momenta (and covers (F, f)). The explicit expression is given by:

ψβ,A(αq1 , p1) =
(

T ∗
q2f(αq1) + 〈β,A〉, F (p1)

)

,

with q2 = ǫ(2)(F (p1)). If one then defines the magnetic form B1 as

B1 = F ∗B2 + d (〈β,AP1〉) ,

one has the following result:

Proposition 7. In the situation above, ψ∗
A,βΩ2 = Ω1.

Proof. A point with coordinates (qi, αi, q̄a, p̄α, pγ) ∈ TP1Q1 is mapped into the point (qi, q̄a, αi+
βaΓai , βa, p̄

α) ∈ TP2Q2 by ψA,β . Using Ω2 =
(

dαi ∧ dqi + dᾱa ∧ dq̄a + B2

)

, it follows easily

(ψA,β)∗Ω2 = dαi ∧ dq
i + d(βaΓai dq

i + βadq̄
a) + F ∗B2

= dαi ∧ dq
i + B1 = Ω1.

Starting from this result one defines the induced magnetic Hamiltonian system on T ∗
P1
Q1, denoted

(ǫ(1), H1,B1), whose Hamiltonian function is given by

H1(αq1 , p1) = ψ∗
A,βH2(αq2 , p2).

As in the case of magnetic Lagrangian systems (see Theorem 3.5), one can then relate the dy-
namics of (ǫ(2), H2,B2) to that of (ǫ(1), H1,B1). We conclude this paragraph with an application
of these transformations to a well known example from mechanics.

Example (Momentum shift in cotangent bundle reduction). We consider the standard
setting for cotangent bundle reduction, namely a Hamiltonian system on T ∗Q and a G action
on T ∗Q by cotangent lifts with associated momentum map defined as:

〈J(αq), ξ〉 = 〈αq, ξQ〉, for all ξ ∈ g.

The reduced space (T ∗Q)µ = J−1(µ)/Gµ is usually realized by choosing an arbitrary principal
connection A on π : Q→ Q/G and making use of the so-called momentum shift. The momentum
shift map Sµ : J−1(µ) → J−1(0) is defined in terms of the connection as Sµ(αq) = αq −Aµ. The
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Q Q

Q/G Q

idQ

π

Figure 10: Transformation scheme for Sµ

target space J−1(0) is naturally identified with T ∗
Q(Q/G), and this allows for an easy reduction.

Consider the following scheme, which is the same as in Routh reduction: Q1 = Q/G, Q2 = Q,
P1 = Q, P2 = Q and the transformation pair (F, f) = (idQ, π). The situation is summarized in
Figure 10. The map β is given by

〈β(q), ξQ(q)〉 = 〈µ, ξ〉, for all ξ ∈ g.

It is easy to check that the map ψA,β : T ∗
Q(Q/G) → T ∗Q, α 7→ π∗α + Aµ equals ıµ ◦ S−1

µ

(where ıµ denotes the inclusion) and induces the magnetic Hamiltonian system on T ∗
Q(Q/G)

whose Hamiltonian function and magnetic term are (ıµ ◦ S−1
µ )∗H and dAµ respectively. The

situation is summarized in Figure 11.

J−1(0) J−1(µ) T ∗Q

T ∗
Q(Q/G)

Sµ ıµ

ΨA,β

Figure 11: Momentum shift
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